IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v125y2017icp208-217.html
   My bibliography  Save this article

Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources

Author

Listed:
  • Calvo, Guiomar
  • Valero, Alicia
  • Valero, Antonio

Abstract

Among the existing methodologies to assess future availability of mineral resources, the Hubbert peak model is a direct approach that can provide useful information about non-fuel mineral depletion using BAU production trends. Using lithium as a case study, the influence on the fluctuations on extractable resources has been analyzed. Accounting only for conventional lithium resources, the peak is only delayed less than two decades even if the most optimistic resources values are doubled. Additionally, using resources information obtained mainly from USGS data, the maximum production peak of 47 mineral commodities has been estimated. For two of them, the maximum theoretical production peak has already been reached, 12 could have theirs in the next 50 years and a total of 30 commodities could reach their maximum production peak in the next century. Many factors can influence these values, changes in future extraction trends, ore grade, exploration and new discoveries and more accurate data on resources. With this information the most crucial elements (i.e. those peaking soon) can be identified and be used to put more emphasis on policies regarding sustainable use of non-renewable commodities.

Suggested Citation

  • Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2017. "Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 208-217.
  • Handle: RePEc:eee:recore:v:125:y:2017:i:c:p:208-217
    DOI: 10.1016/j.resconrec.2017.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917301635
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sverdrup, Harald U. & Ragnarsdottir, Kristin Vala & Koca, Deniz, 2014. "On modelling the global copper mining rates, market supply, copper price and the end of copper reserves," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 158-174.
    2. Harmsen, J.H.M. & Roes, A.L. & Patel, M.K., 2013. "The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios," Energy, Elsevier, vol. 50(C), pages 62-73.
    3. Yaksic, Andrés & Tilton, John E., 2009. "Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium," Resources Policy, Elsevier, vol. 34(4), pages 185-194, December.
    4. Tilton, John E. & Lagos, Gustavo, 2007. "Assessing the long-run availability of copper," Resources Policy, Elsevier, vol. 32(1-2), pages 19-23.
    5. E. V. Verhoef & Gerard P. J. Dijkema & Markus A. Reuter, 2004. "Process Knowledge, System Dynamics, and Metal Ecology," Journal of Industrial Ecology, Yale University, vol. 8(1‐2), pages 23-43, January.
    6. Grosjean, Camille & Miranda, Pamela Herrera & Perrin, Marion & Poggi, Philippe, 2012. "Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1735-1744.
    7. Sverdrup, Harald U. & Ragnarsdottir, Kristin Vala & Koca, Deniz, 2015. "Aluminium for the future: Modelling the global production, market supply, demand, price and long term development of the global reserves," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 139-154.
    8. Vikström, Hanna & Davidsson, Simon & Höök, Mikael, 2013. "Lithium availability and future production outlooks," Applied Energy, Elsevier, vol. 110(C), pages 252-266.
    9. Roberts, F. & Torrens, I., 1974. "Analysis of the life cycle of non-ferrous minerals," Resources Policy, Elsevier, vol. 1(1), pages 14-28, September.
    10. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    11. Henckens, M.L.C.M. & Driessen, P.P.J. & Worrell, E., 2014. "Metal scarcity and sustainability, analyzing the necessity to reduce the extraction of scarce metals," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 1-8.
    12. Valero, Alicia & Valero, Antonio, 2010. "Physical geonomics: Combining the exergy and Hubbert peak analysis for predicting mineral resources depletion," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1074-1083.
    13. García-Olivares, Antonio & Ballabrera-Poy, Joaquim & García-Ladona, Emili & Turiel, Antonio, 2012. "A global renewable mix with proven technologies and common materials," Energy Policy, Elsevier, vol. 41(C), pages 561-574.
    14. Sverdrup, Harald Ulrik, 2016. "Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 112-129.
    15. Gordon, R.B. & Bertram, M. & Graedel, T.E., 2007. "On the sustainability of metal supplies: A response to Tilton and Lagos," Resources Policy, Elsevier, vol. 32(1-2), pages 24-28.
    16. Phillip Crowson, 2011. "Mineral reserves and future minerals availability," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 24(1), pages 1-6, July.
    17. Chapman, Ian, 2014. "The end of Peak Oil? Why this topic is still relevant despite recent denials," Energy Policy, Elsevier, vol. 64(C), pages 93-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadik-Zada, Elkhan Richard & Gatto, Andrea & Scharfenstein, Manuel, 2023. "Sustainable management of lithium and green hydrogen and long-run perspectives of electromobility," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    2. Cai, Xiaomei & Liu, Chan & Zheng, Shuxian & Hu, Han & Tan, Zhanglu, 2023. "Analysis on the evolution characteristics of barite international trade pattern based on complex networks," Resources Policy, Elsevier, vol. 83(C).
    3. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    4. Rachidi, Ntebatše R. & Nwaila, Glen T. & Zhang, Steven E. & Bourdeau, Julie E. & Ghorbani, Yousef, 2021. "Assessing cobalt supply sustainability through production forecasting and implications for green energy policies," Resources Policy, Elsevier, vol. 74(C).
    5. Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
    6. Zhu, Yongguang & Xu, Deyi & Ali, Saleem H. & Cheng, Jinhua, 2021. "A hybrid assessment model for mineral resource availability potentials," Resources Policy, Elsevier, vol. 74(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
    2. Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
    3. Sverdrup, Harald Ulrik, 2016. "Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 112-129.
    4. Emilio Castillo & Roderick Eggert, 2019. "Reconciling Diverging Views on Mineral Depletion: A Modified Cumulative Availability Curve Applied to Copper Resources," Working Papers 2019-02, Colorado School of Mines, Division of Economics and Business.
    5. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    6. Fernando Moreno-Brieva & Carlos Merino, 2020. "African international trade in the global value chain of lithium batteries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1031-1052, August.
    7. Chen, Wu & Wang, Minxi & Li, Xin, 2016. "Analysis of copper flows in the United States: 1975–2012," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 67-76.
    8. Gil-Alana, Luis A. & Monge, Manuel, 2019. "Lithium: Production and estimated consumption. Evidence of persistence," Resources Policy, Elsevier, vol. 60(C), pages 198-202.
    9. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    10. Sverdrup, Harald U. & Ragnarsdottir, Kristin Vala & Koca, Deniz, 2015. "Aluminium for the future: Modelling the global production, market supply, demand, price and long term development of the global reserves," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 139-154.
    11. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    12. Fizaine, Florian, 2013. "Byproduct production of minor metals: Threat or opportunity for the development of clean technologies? The PV sector as an illustration," Resources Policy, Elsevier, vol. 38(3), pages 373-383.
    13. Harvey, L.D. Danny, 2018. "Resource implications of alternative strategies for achieving zero greenhouse gas emissions from light-duty vehicles by 2060," Applied Energy, Elsevier, vol. 212(C), pages 663-679.
    14. Wang, Xiao-Qing & Qin, Meng & Moldovan, Nicoleta-Claudia & Su, Chi-Wei, 2023. "Bubble behaviors in lithium price and the contagion effect: An industry chain perspective," Resources Policy, Elsevier, vol. 83(C).
    15. Harald Ulrik Sverdrup & Kristin Vala Ragnarsdottir & Deniz Koca, 2017. "Integrated Modelling of the Global Cobalt Extraction, Supply, Price and Depletion of Extractable Resources Using the WORLD6 Model," Biophysical Economics and Resource Quality, Springer, vol. 2(1), pages 1-29, March.
    16. Monge, Manuel & Gil-Alana, Luis A., 2019. "Automobile components: Lithium and cobalt. Evidence of persistence," Energy, Elsevier, vol. 169(C), pages 489-495.
    17. Tokimatsu, Koji & Wachtmeister, Henrik & McLellan, Benjamin & Davidsson, Simon & Murakami, Shinsuke & Höök, Mikael & Yasuoka, Rieko & Nishio, Masahiro, 2017. "Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements and the 2°C target," Applied Energy, Elsevier, vol. 207(C), pages 494-509.
    18. Wang, Jiajia & Yue, Xiyan & Wang, Peifen & Yu, Tao & Du, Xiao & Hao, Xiaogang & Abudula, Abuliti & Guan, Guoqing, 2022. "Electrochemical technologies for lithium recovery from liquid resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    19. Larona S. Teseletso & Tsuyoshi Adachi, 2022. "Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model," Resources, MDPI, vol. 11(4), pages 1-19, April.
    20. Karan Bhuwalka & Randolph E. Kirchain & Elsa A. Olivetti & Richard Roth, 2023. "Quantifying the drivers of long‐term prices in materials supply chains," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 141-154, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:125:y:2017:i:c:p:208-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.