IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3096-d1110074.html
   My bibliography  Save this article

Remaining-Useful-Life Prediction for Li-Ion Batteries

Author

Listed:
  • Yeong-Hwa Chang

    (Department of Electrical Engineering, Chang Gung University, Taoyuan City 333, Taiwan
    Department of Electrical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan)

  • Yu-Chen Hsieh

    (Department of Electrical Engineering, Chang Gung University, Taoyuan City 333, Taiwan)

  • Yu-Hsiang Chai

    (Department of Electrical Engineering, Chang Gung University, Taoyuan City 333, Taiwan)

  • Hung-Wei Lin

    (Department of Electrical Engineering, Chang Gung University, Taoyuan City 333, Taiwan)

Abstract

This paper aims to establish a predictive model for battery lifetime using data analysis. The procedure of model establishment is illustrated in detail, including the data pre-processing, modeling, and prediction. The characteristics of lithium-ion batteries are introduced. In this study, data analysis is performed with MATLAB, and the open-source battery data are provided by NASA. The addressed models include the decision tree, nonlinear autoregression, recurrent neural network, and long short-term memory network. In the part of model training, the root-mean-square error, integral of the squared error, and integral of the absolute error are considered for the cost functions. Based on the defined health indicator, the remaining useful life of lithium-ion batteries can be predicted. The confidence interval can be used to describe the level of confidence for each prediction. According to the test results, the long short-term memory network provides the best performance among all addressed models.

Suggested Citation

  • Yeong-Hwa Chang & Yu-Chen Hsieh & Yu-Hsiang Chai & Hung-Wei Lin, 2023. "Remaining-Useful-Life Prediction for Li-Ion Batteries," Energies, MDPI, vol. 16(7), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3096-:d:1110074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3096/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. John J. McCall, 1965. "Maintenance Policies for Stochastically Failing Equipment: A Survey," Management Science, INFORMS, vol. 11(5), pages 493-524, March.
    3. Lingyu Meng & Guofa Wang & Khay Wai See & Yunpeng Wang & Yong Zhang & Caiyun Zang & Rulin Zhou & Bin Xie, 2022. "Large-Scale Li-Ion Battery Research and Application in Mining Industry," Energies, MDPI, vol. 15(11), pages 1-31, May.
    4. Ming-Hui Chang & Han-Pang Huang & Shu-Wei Chang, 2013. "A New State of Charge Estimation Method for LiFePO 4 Battery Packs Used in Robots," Energies, MDPI, vol. 6(4), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jakub Waikat & Amel Jelidi & Sandro Lic & Georgios Sopidis & Olaf Kähler & Anna Maly & Jesús Pestana & Ferdinand Fuhrmann & Fredi Belavić, 2024. "First Measurement Campaign by a Multi-Sensor Robot for the Lifecycle Monitoring of Transformers," Energies, MDPI, vol. 17(5), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Mona Faraji Niri & Koorosh Aslansefat & Sajedeh Haghi & Mojgan Hashemian & Rüdiger Daub & James Marco, 2023. "A Review of the Applications of Explainable Machine Learning for Lithium–Ion Batteries: From Production to State and Performance Estimation," Energies, MDPI, vol. 16(17), pages 1-38, September.
    3. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Sandoval, Cinda & Alvarado, Victor M. & Carmona, Jean-Claude & Lopez Lopez, Guadalupe & Gomez-Aguilar, J.F., 2017. "Energy management control strategy to improve the FC/SC dynamic behavior on hybrid electric vehicles: A frequency based distribution," Renewable Energy, Elsevier, vol. 105(C), pages 407-418.
    5. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    6. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    7. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    8. Vineyard, Michael & Amoako-Gyampah, Kwasi & Meredith, Jack R., 1999. "Failure rate distributions for flexible manufacturing systems: An empirical study," European Journal of Operational Research, Elsevier, vol. 116(1), pages 139-155, July.
    9. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    10. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Hassin, Refael & Sarid, Anna, 2018. "Operations research applications of dichotomous search," European Journal of Operational Research, Elsevier, vol. 265(3), pages 795-812.
    12. Haris, Muhammad & Hasan, Muhammad Noman & Qin, Shiyin, 2021. "Early and robust remaining useful life prediction of supercapacitors using BOHB optimized Deep Belief Network," Applied Energy, Elsevier, vol. 286(C).
    13. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    14. F. Isorna Llerena & E. López González & J. J. Caparrós Mancera & F. Segura Manzano & J. M. Andújar, 2021. "Hydrogen vs. Battery-Based Propulsion Systems in Unipersonal Vehicles—Developing Solutions to Improve the Sustainability of Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    15. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    16. Hu, Chunsheng & Ma, Liang & Guo, Shanshan & Guo, Gangsheng & Han, Zhiqiang, 2022. "Deep learning enabled state-of-charge estimation of LiFePO4 batteries: A systematic validation on state-of-the-art charging protocols," Energy, Elsevier, vol. 246(C).
    17. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    18. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    19. B C Giri & T Dohi, 2005. "Exact formulation of stochastic EMQ model for an unreliable production system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 563-575, May.
    20. Van Quan Dao & Minh-Chau Dinh & Chang Soon Kim & Minwon Park & Chil-Hoon Doh & Jeong Hyo Bae & Myung-Kwan Lee & Jianyong Liu & Zhiguo Bai, 2021. "Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network," Energies, MDPI, vol. 14(9), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3096-:d:1110074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.