IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3003-d1107088.html
   My bibliography  Save this article

Lifetime Limitations in Multi-Service Battery Energy Storage Systems

Author

Listed:
  • Mathilda Ohrelius

    (Applied Electrochemistry, Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden)

  • Magnus Berg

    (Vattenfall AB, SE-162 87 Stockholm, Sweden
    Process Technology, Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden)

  • Rakel Wreland Lindström

    (Applied Electrochemistry, Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden)

  • Göran Lindbergh

    (Applied Electrochemistry, Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden)

Abstract

A reliable power grid system based on renewable energy sources is a crucial step to restrict the climate crisis. Stationary battery energy storage systems (BESS) offer a great potential to repel power fluctuations in the grid at different timescales. However, for a reliable operation and cost estimation, the degradation in the batteries needs to be understood. We present an accelerated battery degradation study, on single as well as multi-service applications, of NCM532/Gr lithium-ion battery cells. Frequency regulation (FR) was the least harmful for the battery, with an expected lifetime of 12 years, while peak shaving (PS) resulted in an expected lifetime of 8 years. The combined cycle (FRPS) accelerated the capacity loss, and degradation of the positive electrode was induced from the start of cycling, causing power limitations after only 870 equivalent full cycles (EFC). Tracking the 1C-rate discharge capacity was proven to be a good indication of the accelerated cell polarization, and it can serve as a useful method to evaluate the internal battery state of health (SOH).

Suggested Citation

  • Mathilda Ohrelius & Magnus Berg & Rakel Wreland Lindström & Göran Lindbergh, 2023. "Lifetime Limitations in Multi-Service Battery Energy Storage Systems," Energies, MDPI, vol. 16(7), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3003-:d:1107088
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3003/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3003/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. In-Ho Cho & Pyeong-Yeon Lee & Jong-Hoon Kim, 2019. "Analysis of the Effect of the Variable Charging Current Control Method on Cycle Life of Li-ion Batteries," Energies, MDPI, vol. 12(15), pages 1-11, August.
    2. Fabio Massimo Gatta & Alberto Geri & Regina Lamedica & Stefano Lauria & Marco Maccioni & Francesco Palone & Massimo Rebolini & Alessandro Ruvio, 2016. "Application of a LiFePO 4 Battery Energy Storage System to Primary Frequency Control: Simulations and Experimental Results," Energies, MDPI, vol. 9(11), pages 1-16, October.
    3. Rahman, Md Mustafizur & Oni, Abayomi Olufemi & Gemechu, Eskinder & Kumar, Amit, 2021. "The development of techno-economic models for the assessment of utility-scale electro-chemical battery storage systems," Applied Energy, Elsevier, vol. 283(C).
    4. Waag, Wladislaw & Käbitz, Stefan & Sauer, Dirk Uwe, 2013. "Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application," Applied Energy, Elsevier, vol. 102(C), pages 885-897.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
    3. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    4. Hao Sun & Bo Jiang & Heze You & Bojian Yang & Xueyuan Wang & Xuezhe Wei & Haifeng Dai, 2021. "Quantitative Analysis of Degradation Modes of Lithium-Ion Battery under Different Operating Conditions," Energies, MDPI, vol. 14(2), pages 1-19, January.
    5. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    6. Yun Bao & Yuansheng Chen, 2021. "Lithium-Ion Battery Real-Time Diagnosis with Direct Current Impedance Spectroscopy," Energies, MDPI, vol. 14(15), pages 1-16, July.
    7. Fulin Fan & Giorgio Zorzi & David Campos-Gaona & Graeme Burt & Olimpo Anaya-Lara & John Nwobu & Ander Madariaga, 2021. "Sizing and Coordination Strategies of Battery Energy Storage System Co-Located with Wind Farm: The UK Perspective," Energies, MDPI, vol. 14(5), pages 1-21, March.
    8. Thanh-Tung Nguyen & Abdul Basit Khan & Younghwi Ko & Woojin Choi, 2020. "An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter," Energies, MDPI, vol. 13(17), pages 1-15, September.
    9. Qiaohua Fang & Xuezhe Wei & Haifeng Dai, 2019. "A Remaining Discharge Energy Prediction Method for Lithium-Ion Battery Pack Considering SOC and Parameter Inconsistency," Energies, MDPI, vol. 12(6), pages 1-24, March.
    10. Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2021. "Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures," Energy, Elsevier, vol. 216(C).
    11. Sung-Min Cho & Jin-Su Kim & Jae-Chul Kim, 2019. "Optimal Operation Parameter Estimation of Energy Storage for Frequency Regulation," Energies, MDPI, vol. 12(9), pages 1-21, May.
    12. Natascia Andrenacci & Elio Chiodo & Davide Lauria & Fabio Mottola, 2018. "Life Cycle Estimation of Battery Energy Storage Systems for Primary Frequency Regulation," Energies, MDPI, vol. 11(12), pages 1-24, November.
    13. Thomas F. Landinger & Guenter Schwarzberger & Guenter Hofer & Matthias Rose & Andreas Jossen, 2021. "Power Line Communications for Automotive High Voltage Battery Systems: Channel Modeling and Coexistence Study with Battery Monitoring," Energies, MDPI, vol. 14(7), pages 1-26, March.
    14. Tao, Laifa & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou & Noktehdan, Azadeh, 2017. "Lithium-ion battery capacity fading dynamics modelling for formulation optimization: A stochastic approach to accelerate the design process," Applied Energy, Elsevier, vol. 202(C), pages 138-152.
    15. Yingjie Chen & Geng Yang & Xu Liu & Zhichao He, 2019. "A Time-Efficient and Accurate Open Circuit Voltage Estimation Method for Lithium-Ion Batteries," Energies, MDPI, vol. 12(9), pages 1-20, May.
    16. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    17. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    18. Fabio Massimo Gatta & Alberto Geri & Regina Lamedica & Stefano Lauria & Marco Maccioni & Francesco Palone & Massimo Rebolini & Alessandro Ruvio, 2016. "Application of a LiFePO 4 Battery Energy Storage System to Primary Frequency Control: Simulations and Experimental Results," Energies, MDPI, vol. 9(11), pages 1-16, October.
    19. Abdel-Monem, Mohamed & Trad, Khiem & Omar, Noshin & Hegazy, Omar & Van den Bossche, Peter & Van Mierlo, Joeri, 2017. "Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries," Energy, Elsevier, vol. 120(C), pages 179-191.
    20. Timur Yunusov & Maximilian J. Zangs & William Holderbaum, 2017. "Control of Energy Storage," Energies, MDPI, vol. 10(7), pages 1-5, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3003-:d:1107088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.