A New Time-Series Fluctuation Study Method Applied to Flow and Pressure Data in a Heating Network
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
- Zhang, Qunli & Zhang, Lin & Nie, Jinzhe & Li, Yinlong, 2017. "Techno-economic analysis of air source heat pump applied for space heating in northern China," Applied Energy, Elsevier, vol. 207(C), pages 533-542.
- Gadd, Henrik & Werner, Sven, 2013. "Heat load patterns in district heating substations," Applied Energy, Elsevier, vol. 108(C), pages 176-183.
- Gadd, Henrik & Werner, Sven, 2015. "Fault detection in district heating substations," Applied Energy, Elsevier, vol. 157(C), pages 51-59.
- Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
- Du, Zhimin & Jin, Xinqiao & Yang, Yunyu, 2009. "Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network," Applied Energy, Elsevier, vol. 86(9), pages 1624-1631, September.
- Gong, Mei & Werner, Sven, 2015. "An assessment of district heating research in China," Renewable Energy, Elsevier, vol. 84(C), pages 97-105.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
- Sara Månsson & Kristin Davidsson & Patrick Lauenburg & Marcus Thern, 2018. "Automated Statistical Methods for Fault Detection in District Heating Customer Installations," Energies, MDPI, vol. 12(1), pages 1-18, December.
- Ma, Sining & Guo, Siyue & Zheng, Dingqian & Chang, Shiyan & Zhang, Xiliang, 2021. "Roadmap towards clean and low carbon heating to 2035: A provincial analysis in northern China," Energy, Elsevier, vol. 225(C).
- Sernhed, Kerstin & Lygnerud, Kristina & Werner, Sven, 2018. "Synthesis of recent Swedish district heating research," Energy, Elsevier, vol. 151(C), pages 126-132.
- Calikus, Ece & Nowaczyk, Sławomir & Sant'Anna, Anita & Gadd, Henrik & Werner, Sven, 2019. "A data-driven approach for discovering heat load patterns in district heating," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Fester, Jakob & Østergaard, Peter Friis & Bentsen, Fredrik & Nielsen, Brian Kongsgaard, 2023. "A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data," Energy, Elsevier, vol. 277(C).
- Kim, Ryunhee & Hong, Yejin & Choi, Youngwoong & Yoon, Sungmin, 2021. "System-level fouling detection of district heating substations using virtual-sensor-assisted building automation system," Energy, Elsevier, vol. 227(C).
- Averfalk, Helge & Werner, Sven, 2018. "Novel low temperature heat distribution technology," Energy, Elsevier, vol. 145(C), pages 526-539.
- Østergaard, Dorte Skaarup & Svendsen, Svend, 2018. "Experience from a practical test of low-temperature district heating for space heating in five Danish single-family houses from the 1930s," Energy, Elsevier, vol. 159(C), pages 569-578.
- Zhang, Fan & Bales, Chris & Fleyeh, Hasan, 2021. "Night setback identification of district heat substations using bidirectional long short term memory with attention mechanism," Energy, Elsevier, vol. 224(C).
- Yuwen You & Zhonghua Wang & Zhihao Liu & Chunmei Guo & Bin Yang, 2024. "Load Prediction of Regional Heat Exchange Station Based on Fuzzy Clustering Based on Fourier Distance and Convolutional Neural Network–Bidirectional Long Short-Term Memory Network," Energies, MDPI, vol. 17(16), pages 1-19, August.
- Østergaard, Dorte Skaarup & Tunzi, Michele & Svendsen, Svend, 2021. "What does a well-functioning heating system look like? Investigation of ten Danish buildings that utilize district heating efficiently," Energy, Elsevier, vol. 227(C).
- Gong, Mei & Ottermo, Fredric, 2022. "High-temperature thermal storage in combined heat and power plants," Energy, Elsevier, vol. 252(C).
- Månsson, Sara & Johansson Kallioniemi, Per-Olof & Thern, Marcus & Van Oevelen, Tijs & Sernhed, Kerstin, 2019. "Faults in district heating customer installations and ways to approach them: Experiences from Swedish utilities," Energy, Elsevier, vol. 180(C), pages 163-174.
- Ioan Sarbu & Matei Mirza & Daniel Muntean, 2022. "Integration of Renewable Energy Sources into Low-Temperature District Heating Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-28, September.
- Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
- Theofanis Benakopoulos & Robbe Salenbien & Dirk Vanhoudt & Svend Svendsen, 2019. "Improved Control of Radiator Heating Systems with Thermostatic Radiator Valves without Pre-Setting Function," Energies, MDPI, vol. 12(17), pages 1-24, August.
- Nord, Natasa & Shakerin, Mohammad & Tereshchenko, Tymofii & Verda, Vittorio & Borchiellini, Romano, 2021. "Data informed physical models for district heating grids with distributed heat sources to understand thermal and hydraulic aspects," Energy, Elsevier, vol. 222(C).
- Østergaard, Dorte Skaarup & Svendsen, Svend, 2016. "Replacing critical radiators to increase the potential to use low-temperature district heating – A case study of 4 Danish single-family houses from the 1930s," Energy, Elsevier, vol. 110(C), pages 75-84.
- Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
More about this item
Keywords
hot water heating networks; smart heating; identification of step data; time-series data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2709-:d:1097033. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.