IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2416-d1086436.html
   My bibliography  Save this article

Pump-Valve Combined Control of a HVAC Chilled Water System Using an Artificial Neural Network Model

Author

Listed:
  • Bo Gao

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Ji Ni

    (Sichuan Institute of Building Research, Chengdu 610030, China)

  • Zhongyuan Yuan

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Nanyang Yu

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

Abstract

A chilled water system transports cooling functionality from refrigerators to users via heating, ventilation, and air conditioning (HVAC) systems. This paper investigated an optimal control strategy to regulate the volume flow rate of each user branch in a chilled water system, considering the minimum resistance operation to reduce energy consumption. An artificial neural network (ANN) was adopted to establish the nonlinear relationship between the volume flow rate of each user branch, pump frequency, and valve opening of each user branch. An optimal control strategy for a chilled water HVAC system is proposed in this article, according to the pump-valve combined control (PVCC) principle and an ANN model, i.e., pump-valve combined control using an artificial neural network model (PVCC-ANN). A series of tests were conducted to collect data to train the ANN model and analyze the performance of the PVCC-ANN in an experimental chilled water system. The results show that the trained ANN model has good prediction performance. A minimum resistance operation can be achieved to control the volume flow rate of each user branch independently by using the PVCC-ANN model. Moreover, the proposed PVCC-ANN method shows good energy-saving performance in chilled water systems, which can be attributed to the minimum resistance operation. Taking the energy consumption of the pump’s constant frequency operation as the reference, the energy saving rate using the PVCC-ANN is between 14.3% and 58.6% under 10 operating conditions, as reported in this paper.

Suggested Citation

  • Bo Gao & Ji Ni & Zhongyuan Yuan & Nanyang Yu, 2023. "Pump-Valve Combined Control of a HVAC Chilled Water System Using an Artificial Neural Network Model," Energies, MDPI, vol. 16(5), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2416-:d:1086436
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2416/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei, Yue & Zhan, Sicheng & Ono, Eikichi & Peng, Yuzhen & Zhang, Zhiang & Hasama, Takamasa & Chong, Adrian, 2022. "A practical deep reinforcement learning framework for multivariate occupant-centric control in buildings," Applied Energy, Elsevier, vol. 324(C).
    2. Wang, Huilong & Ding, Zhikun & Tang, Rui & Chen, Yongbao & Fan, Cheng & Wang, Jiayuan, 2022. "A machine learning-based control strategy for improved performance of HVAC systems in providing large capacity of frequency regulation service," Applied Energy, Elsevier, vol. 326(C).
    3. Wei, Xiupeng & Xu, Guanglin & Kusiak, Andrew, 2014. "Modeling and optimization of a chiller plant," Energy, Elsevier, vol. 73(C), pages 898-907.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    2. Xiaoqing Wei & Nianping Li & Jinqing Peng & Jianlin Cheng & Jinhua Hu & Meng Wang, 2017. "Modeling and Optimization of a CoolingTower-Assisted Heat Pump System," Energies, MDPI, vol. 10(5), pages 1-18, May.
    3. Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
    4. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    5. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    6. Thangavelu, Sundar Raj & Myat, Aung & Khambadkone, Ashwin, 2017. "Energy optimization methodology of multi-chiller plant in commercial buildings," Energy, Elsevier, vol. 123(C), pages 64-76.
    7. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
    8. Verma, Anoop & Asadi, Ali & Yang, Kai & Tyagi, Satish, 2015. "A data-driven approach to identify households with plug-in electrical vehicles (PEVs)," Applied Energy, Elsevier, vol. 160(C), pages 71-79.
    9. Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
    10. Suryakant, & Tyagi, Satish, 2015. "Optimization of a platform configuration with generational changes," International Journal of Production Economics, Elsevier, vol. 169(C), pages 299-309.
    11. Zheng, Lingwei & Wu, Hao & Guo, Siqi & Sun, Xinyu, 2023. "Real-time dispatch of an integrated energy system based on multi-stage reinforcement learning with an improved action-choosing strategy," Energy, Elsevier, vol. 277(C).
    12. Guo, Fangzhou & Li, Ao & Yue, Bao & Xiao, Ziwei & Xiao, Fu & Yan, Rui & Li, Anbang & Lv, Yan & Su, Bing, 2024. "Improving the out-of-sample generalization ability of data-driven chiller performance models using physics-guided neural network," Applied Energy, Elsevier, vol. 354(PA).
    13. Thayane L. Bilésimo & Enedir Ghisi, 2024. "Utilisation of Machine Learning in Control Systems Based on the Preference of Office Users," Sustainability, MDPI, vol. 16(10), pages 1-19, May.
    14. Bornman, Waldo & Dirker, Jaco & Arndt, Deon C. & Meyer, Josua P., 2016. "Operational energy minimisation for forced draft, direct-contact bulk air cooling tower through a combination of forward and first-principle modelling, coupled with an optimisation platform," Energy, Elsevier, vol. 114(C), pages 995-1006.
    15. Ono, Hitoi & Ohtani, Yuichi & Matsuo, Minoru & Yamaguchi, Toru & Yokoyama, Ryohei, 2021. "Optimal operation of heat source and air conditioning system with thermal storage tank using nonlinear programming," Energy, Elsevier, vol. 222(C).
    16. Grágeda, Mario & González, Alonso & Alavia, Wilson & Ushak, Svetlana, 2015. "Development and optimization of a modified process for producing the battery grade LiOH: Optimization of energy and water consumption," Energy, Elsevier, vol. 89(C), pages 667-677.
    17. Ho, W.T. & Yu, F.W., 2021. "Improved model and optimization for the energy performance of chiller system with diverse component staging," Energy, Elsevier, vol. 217(C).
    18. Daishi Sagawa & Kenji Tanaka, 2023. "Machine Learning-Based Estimation of COP and Multi-Objective Optimization of Operation Strategy for Heat Source Considering Electricity Cost and On-Site Consumption of Renewable Energy," Energies, MDPI, vol. 16(13), pages 1-26, June.
    19. Sonmez, Mustafa & Akgüngör, Ali Payıdar & Bektaş, Salih, 2017. "Estimating transportation energy demand in Turkey using the artificial bee colony algorithm," Energy, Elsevier, vol. 122(C), pages 301-310.
    20. Ayas Shaqour & Aya Hagishima, 2022. "Systematic Review on Deep Reinforcement Learning-Based Energy Management for Different Building Types," Energies, MDPI, vol. 15(22), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2416-:d:1086436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.