IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2348-d1083991.html
   My bibliography  Save this article

Hydrogen Storage on Porous Carbon Adsorbents: Rediscovery by Nature-Derived Algorithms in Random Forest Machine Learning Model

Author

Listed:
  • Hung Vo Thanh

    (Laboratory for Computational Mechanics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City 700000, Vietnam
    Faculty of Mechanical–Electrical and Computer Engineering, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam)

  • Sajad Ebrahimnia Taremsari

    (Department of Mechanical Engineering, Payame Noor University (PNU), Tehran 19395-4697, Iran)

  • Benyamin Ranjbar

    (Energy Department, Politecnico di Torino, 10129 Torino, Italy)

  • Hossein Mashhadimoslem

    (Faculty of Chemical Engineering, Iran University of Science & Technology (IUST), Tehran 16846, Iran
    Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Ehsan Rahimi

    (Department of Materials Science and Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands)

  • Mohammad Rahimi

    (Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran)

  • Ali Elkamel

    (Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
    Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 59911, United Arab Emirates)

Abstract

Porous carbons as solid adsorbent materials possess effective porosity characteristics that are the most important factors for gas storage. The chemical activating routes facilitate hydrogen storage by adsorbing on the high surface area and microporous features of porous carbon-based adsorbents. The present research proposed to predict H 2 storage using four nature-inspired algorithms applied in the random forest (RF) model. Various carbon-based adsorbents, chemical activating agents, ratios, micro-structural features, and operational parameters as input variables are applied in the ML model to predict H 2 uptake (wt%). Particle swarm and gray wolf optimizations (PSO and GWO) in the RF model display accuracy in the train and test phases, with an R 2 of ~0.98 and 0.91, respectively. Sensitivity analysis demonstrated the ranks for temperature, total pore volume, specific surface area, and micropore volume in first to fourth, with relevancy scores of 1 and 0.48. The feasibility of algorithms in training sizes 80 to 60% evaluated that RMSE and MAE achieved 0.6 to 1, and 0.38 to 0.52. This study contributes to the development of sustainable energy sources by providing a predictive model and insights into the design of porous carbon adsorbents for hydrogen storage. The use of nature-inspired algorithms in the model development process is also a novel approach that could be applied to other areas of materials science and engineering.

Suggested Citation

  • Hung Vo Thanh & Sajad Ebrahimnia Taremsari & Benyamin Ranjbar & Hossein Mashhadimoslem & Ehsan Rahimi & Mohammad Rahimi & Ali Elkamel, 2023. "Hydrogen Storage on Porous Carbon Adsorbents: Rediscovery by Nature-Derived Algorithms in Random Forest Machine Learning Model," Energies, MDPI, vol. 16(5), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2348-:d:1083991
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sharma, Sunita & Ghoshal, Sib Krishna, 2015. "Hydrogen the future transportation fuel: From production to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1151-1158.
    2. Keith T. Butler & Daniel W. Davies & Hugh Cartwright & Olexandr Isayev & Aron Walsh, 2018. "Machine learning for molecular and materials science," Nature, Nature, vol. 559(7715), pages 547-555, July.
    3. Sara Stelitano & Giuseppe Conte & Alfonso Policicchio & Alfredo Aloise & Giovanni Desiderio & Raffaele G. Agostino, 2020. "Pinecone-Derived Activated Carbons as an Effective Medium for Hydrogen Storage," Energies, MDPI, vol. 13(9), pages 1-16, May.
    4. Mahdieh Parsaeian & Mohammad Rahimi & Abbas Rohani & Shaneka S. Lawson, 2022. "Towards the Modeling and Prediction of the Yield of Oilseed Crops: A Multi-Machine Learning Approach," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
    5. Rahimi, Mohammad & Abbaspour-Fard, Mohammad Hossein & Rohani, Abbas, 2021. "A multi-data-driven procedure towards a comprehensive understanding of the activated carbon electrodes performance (using for supercapacitor) employing ANN technique," Renewable Energy, Elsevier, vol. 180(C), pages 980-992.
    6. Chen, Bailian & Pawar, Rajesh J., 2019. "Characterization of CO2 storage and enhanced oil recovery in residual oil zones," Energy, Elsevier, vol. 183(C), pages 291-304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahimi, Mohammad & Mashhadimoslem, Hossein & Vo Thanh, Hung & Ranjbar, Benyamin & Safarzadeh Khosrowshahi, Mobin & Rohani, Abbas & Elkamel, Ali, 2023. "Yield prediction and optimization of biomass-based products by multi-machine learning schemes: Neural, regression and function-based techniques," Energy, Elsevier, vol. 283(C).
    2. Vo Thanh, Hung & Sheini Dashtgoli, Danial & Zhang, Hemeng & Min, Baehyun, 2023. "Machine-learning-based prediction of oil recovery factor for experimental CO2-Foam chemical EOR: Implications for carbon utilization projects," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahimi, Mohammad & Mashhadimoslem, Hossein & Vo Thanh, Hung & Ranjbar, Benyamin & Safarzadeh Khosrowshahi, Mobin & Rohani, Abbas & Elkamel, Ali, 2023. "Yield prediction and optimization of biomass-based products by multi-machine learning schemes: Neural, regression and function-based techniques," Energy, Elsevier, vol. 283(C).
    2. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Han Li & Ruotian Zhang & Yaosen Min & Dacheng Ma & Dan Zhao & Jianyang Zeng, 2023. "A knowledge-guided pre-training framework for improving molecular representation learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Tian Xie & Arthur France-Lanord & Yanming Wang & Jeffrey Lopez & Michael A. Stolberg & Megan Hill & Graham Michael Leverick & Rafael Gomez-Bombarelli & Jeremiah A. Johnson & Yang Shao-Horn & Jeffrey C, 2022. "Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. O. V. Mythreyi & M. Rohith Srinivaas & Tigga Amit Kumar & R. Jayaganthan, 2021. "Machine-Learning-Based Prediction of Corrosion Behavior in Additively Manufactured Inconel 718," Data, MDPI, vol. 6(8), pages 1-16, July.
    7. Cai, Mingyu & Su, Yuliang & Elsworth, Derek & Li, Lei & Fan, Liyao, 2021. "Hydro-mechanical-chemical modeling of sub-nanopore capillary-confinement on CO2-CCUS-EOR," Energy, Elsevier, vol. 225(C).
    8. Baoshan Wang & Qingxi Liao & Lei Wang & Caixia Shu & Mei Cao & Wenbin Du, 2023. "Design and Test of Air-Assisted Seed-Guiding Device of Precision Hill-Seeding Centralized Seed-Metering Device for Sesame," Agriculture, MDPI, vol. 13(2), pages 1-21, February.
    9. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    10. Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    11. Granada, Camille E. & Hasan, Camila & Marder, Munique & Konrad, Odorico & Vargas, Luciano K. & Passaglia, Luciane M.P. & Giongo, Adriana & de Oliveira, Rafael R. & Pereira, Leandro de M. & de Jesus Tr, 2018. "Biogas from slaughterhouse wastewater anaerobic digestion is driven by the archaeal family Methanobacteriaceae and bacterial families Porphyromonadaceae and Tissierellaceae," Renewable Energy, Elsevier, vol. 118(C), pages 840-846.
    12. Snehi Shrestha & Kieran James Barvenik & Tianle Chen & Haochen Yang & Yang Li & Meera Muthachi Kesavan & Joshua M. Little & Hayden C. Whitley & Zi Teng & Yaguang Luo & Eleonora Tubaldi & Po-Yen Chen, 2024. "Machine intelligence accelerated design of conductive MXene aerogels with programmable properties," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Faubert, Patrick & Barnabé, Simon & Bouchard, Sylvie & Côté, Richard & Villeneuve, Claude, 2016. "Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions?," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 107-133.
    14. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    15. Zhang, Peiye & Liu, Ming & Mu, Ruiqi & Yan, Junjie, 2024. "Exergy-based control strategy design and dynamic performance enhancement for parabolic trough solar receiver-reactor of methanol decomposition reaction," Renewable Energy, Elsevier, vol. 224(C).
    16. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    17. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    18. Yunesky Masip Macía & Pablo Rodríguez Machuca & Angel Alexander Rodríguez Soto & Roberto Carmona Campos, 2021. "Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    19. Mostafa Rezaei & Ali Mostafaeipour & Mojtaba Qolipour & Hamid-Reza Arabnia, 2018. "Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran," Energy & Environment, , vol. 29(3), pages 333-357, May.
    20. Xinyu Chen & Shuaihua Lu & Qian Chen & Qionghua Zhou & Jinlan Wang, 2024. "From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2348-:d:1083991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.