IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2274-d1081758.html
   My bibliography  Save this article

An Improved Microseismic Signal Denoising Method of Rock Failure for Deeply Buried Energy Exploration

Author

Listed:
  • Shibin Tang

    (School of Civil Engineering, Dalian University of Technology, Dalian 116024, China)

  • Shun Ding

    (School of Civil Engineering, Dalian University of Technology, Dalian 116024, China)

  • Jiaming Li

    (School of Civil Engineering, Dalian University of Technology, Dalian 116024, China)

  • Chun Zhu

    (School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China)

  • Leyu Cao

    (School of Civil Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract

Microseismic monitoring has become a well-known technique for predicting the mechanisms of rock failure in deeply buried energy exploration, in which noise has a great influence on microseismic monitoring results. We proposed an improved microseismic denoising method based on different wavelet coefficients of useful signal and noise components. First, according to the selection of an appropriate wavelet threshold and threshold function, the useful signal part of original microseismic signal was decomposed many times and reconstructed to achieve denoising. Subsequently, synthetic signals of different types (microseismic noise, microseismic current, microseismic noise current) and with various signal-to-noise ratios (SNRs, −10~10) were used as test data. Evaluation indicators (mean absolute error μ and standard deviation error σ ) were established to compare the denoising effect of different denoising methods and verify that the improved method is more effective than the traditional denoising methods (wavelet global threshold, empirical mode decomposition and wavelet transform–empirical mode decomposition). Finally, the proposed method was applied to actual field microseismic data. The results showed that the microseismic signal (with different types of noise) could be fully denoised (car honk, knock, current and construction noise, etc.) without losing useful signals (pure microseismic), suggesting that the proposed approach provides a good basis for the subsequent evaluation and classification of rock burst disasters.

Suggested Citation

  • Shibin Tang & Shun Ding & Jiaming Li & Chun Zhu & Leyu Cao, 2023. "An Improved Microseismic Signal Denoising Method of Rock Failure for Deeply Buried Energy Exploration," Energies, MDPI, vol. 16(5), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2274-:d:1081758
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krystian Wójcik & Jarosław Zacharski & Marcin Łojek & Sara Wróblewska & Hubert Kiersnowski & Krzysztof Waśkiewicz & Adam Wójcicki & Rafał Laskowicz & Katarzyna Sobień & Tadeusz Peryt & Agnieszka Chyli, 2022. "New Opportunities for Oil and Gas Exploration in Poland—A Review," Energies, MDPI, vol. 15(5), pages 1-25, February.
    2. Qinghua Wang & Yintao Zhang & Zhou Xie & Yawen Zhao & Can Zhang & Chong Sun & Guanghui Wu, 2022. "The Advancement and Challenges of Seismic Techniques for Ultra-Deep Carbonate Reservoir Exploitation in the Tarim Basin of Northwestern China," Energies, MDPI, vol. 15(20), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lixin Chen & Zhenxue Jiang & Chong Sun & Bingshan Ma & Zhou Su & Xiaoguo Wan & Jianfa Han & Guanghui Wu, 2023. "An Overview of the Differential Carbonate Reservoir Characteristic and Exploitation Challenge in the Tarim Basin (NW China)," Energies, MDPI, vol. 16(15), pages 1-14, July.
    2. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.
    3. Yawen Zhao & Guanghui Wu & Yintao Zhang & Nicola Scarselli & Wei Yan & Chong Sun & Jianfa Han, 2023. "The Strike-Slip Fault Effects on Tight Ordovician Reef-Shoal Reservoirs in the Central Tarim Basin (NW China)," Energies, MDPI, vol. 16(6), pages 1-14, March.
    4. Bing He & Yicheng Liu & Chen Qiu & Yun Liu & Chen Su & Qingsong Tang & Weizhen Tian & Guanghui Wu, 2023. "The Strike-Slip Fault Effects on the Ediacaran Carbonate Tight Reservoirs in the Central Sichuan Basin, China," Energies, MDPI, vol. 16(10), pages 1-12, May.
    5. Zhipeng Sun & Ruizhao Yang & Feng Geng & Li Wang & Lingda Wang & Jialiang Guo, 2023. "Analyzing the Formation and Evolution of Strike-Slip Faults and Their Controlling Effects on Hydrocarbon Migration and Charging: A Case Study of Tahe Area, Tarim Basin," Energies, MDPI, vol. 16(5), pages 1-29, March.
    6. Christian Barika Igbeghe & Tamás Mizik & Zoltán Gabnai & Attila Bai, 2023. "Trends and Characterization of Primary Energy Sources by Energy and Food Prices," Energies, MDPI, vol. 16(7), pages 1-18, March.
    7. Qingsong Tang & Shuhang Tang & Bing Luo & Xin Luo & Liang Feng & Siyao Li & Guanghui Wu, 2022. "Seismic Description of Deep Strike-Slip Fault Damage Zone by Steerable Pyramid Method in the Sichuan Basin, China," Energies, MDPI, vol. 15(21), pages 1-13, October.
    8. Xiao He & Guian Guo & Qingsong Tang & Guanghui Wu & Wei Xu & Bingshan Ma & Tianjun Huang & Weizhen Tian, 2022. "The Advances and Challenges of the Ediacaran Fractured Reservoir Development in the Central Sichuan Basin, China," Energies, MDPI, vol. 15(21), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2274-:d:1081758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.