IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8137-d959633.html
   My bibliography  Save this article

The Advances and Challenges of the Ediacaran Fractured Reservoir Development in the Central Sichuan Basin, China

Author

Listed:
  • Xiao He

    (PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China)

  • Guian Guo

    (PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China)

  • Qingsong Tang

    (PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China)

  • Guanghui Wu

    (School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China)

  • Wei Xu

    (PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China)

  • Bingshan Ma

    (School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China)

  • Tianjun Huang

    (PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China)

  • Weizhen Tian

    (School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China)

Abstract

The largest Precambrian gasfield in China has been found in the central Sichuan Basin. It has been assumed as an Ediacaran (Sinian) mound–shoal, microfacies-controlled, dolomite reservoir. However, the extremely low porosity–permeability and heterogeneous reservoir cannot establish high production by conventional development technology in the deep subsurface. For this contribution, we carried out development tests on the fractured reservoir by seismic reservoir description and horizontal well drilling. New advances have been made in recent years: (1) the prestack time and depth migration processing provides better seismic data for strike-slip fault identification; (2) seismic planar strike-slip structures (e.g., en échelon/oblique faults) and lithofacies offset together with sectional vertical fault reflection and flower structure are favorable for strike–slip fault identification; (3) in addition to coherence, maximum likelihood and steerable pyramid attributes can be used to identify small strike-slip faults and for fault mapping; (4) fusion attributes of seismic illumination and structural tensor were used to find fractured reservoir along fault damage zone; (5) horizontal wells were carried out across the strike-slip fault damage zone and penetrated fractured reservoir with high production. Subsequently, a large strike-slip fault system has been found throughout the central intracratonic basin, and the “sweet spot” of the fractured reservoir along the strike-slip fault damage zone is widely developed to be a new favorable domain for high-production development. There is still a big challenge in seismic and horizontal well technology for the economical exploitation of the deep fractured reservoirs. This practice provides new insight in the deep tight matrix reservoir development.

Suggested Citation

  • Xiao He & Guian Guo & Qingsong Tang & Guanghui Wu & Wei Xu & Bingshan Ma & Tianjun Huang & Weizhen Tian, 2022. "The Advances and Challenges of the Ediacaran Fractured Reservoir Development in the Central Sichuan Basin, China," Energies, MDPI, vol. 15(21), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8137-:d:959633
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8137/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8137/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qinghua Wang & Yintao Zhang & Zhou Xie & Yawen Zhao & Can Zhang & Chong Sun & Guanghui Wu, 2022. "The Advancement and Challenges of Seismic Techniques for Ultra-Deep Carbonate Reservoir Exploitation in the Tarim Basin of Northwestern China," Energies, MDPI, vol. 15(20), pages 1-13, October.
    2. Fuxiao Shen & Shiyin Li & Xingliang Deng & Zhiliang Liu & Ping Guo & Guanghui Wu, 2022. "Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin," Energies, MDPI, vol. 15(11), pages 1-11, May.
    3. Rujun Wang & Jianping Yang & Lunjie Chang & Yintao Zhang & Chong Sun & Xiaoguo Wan & Guanghui Wu & Bingchen Bai, 2022. "3D Modeling of Fracture-Cave Reservoir from a Strike-Slip Fault-Controlled Carbonate Oilfield in Northwestern China," Energies, MDPI, vol. 15(17), pages 1-14, September.
    4. Yongfeng Zhu & Yintao Zhang & Xingxing Zhao & Zhou Xie & Guanghui Wu & Ting Li & Shuai Yang & Pengfei Kang, 2022. "The Fault Effects on the Oil Migration in the Ultra-Deep Fuman Oilfield of the Tarim Basin, NW China," Energies, MDPI, vol. 15(16), pages 1-15, August.
    5. Long Wen & Qi Ran & Weizhen Tian & Han Liang & Yuan Zhong & Yu Zou & Chen Su & Guanghui Wu, 2022. "Strike-Slip Fault Effects on Diversity of the Ediacaran Mound-Shoal Distribution in the Central Sichuan Intracratonic Basin, China," Energies, MDPI, vol. 15(16), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bing He & Yicheng Liu & Chen Qiu & Yun Liu & Chen Su & Qingsong Tang & Weizhen Tian & Guanghui Wu, 2023. "The Strike-Slip Fault Effects on the Ediacaran Carbonate Tight Reservoirs in the Central Sichuan Basin, China," Energies, MDPI, vol. 16(10), pages 1-12, May.
    2. Xin Luo & Siqi Chen & Jiawei Liu & Fei Li & Liang Feng & Siyao Li & Yonghong Wu & Guanghui Wu & Bin Luo, 2023. "The Fractured Permian Reservoir and Its Significance in the Gas Exploitation in the Sichuan Basin, China," Energies, MDPI, vol. 16(4), pages 1-13, February.
    3. Lixin Chen & Zhenxue Jiang & Chong Sun & Bingshan Ma & Zhou Su & Xiaoguo Wan & Jianfa Han & Guanghui Wu, 2023. "An Overview of the Differential Carbonate Reservoir Characteristic and Exploitation Challenge in the Tarim Basin (NW China)," Energies, MDPI, vol. 16(15), pages 1-14, July.
    4. Yawen Zhao & Guanghui Wu & Yintao Zhang & Nicola Scarselli & Wei Yan & Chong Sun & Jianfa Han, 2023. "The Strike-Slip Fault Effects on Tight Ordovician Reef-Shoal Reservoirs in the Central Tarim Basin (NW China)," Energies, MDPI, vol. 16(6), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bing He & Yicheng Liu & Chen Qiu & Yun Liu & Chen Su & Qingsong Tang & Weizhen Tian & Guanghui Wu, 2023. "The Strike-Slip Fault Effects on the Ediacaran Carbonate Tight Reservoirs in the Central Sichuan Basin, China," Energies, MDPI, vol. 16(10), pages 1-12, May.
    2. Zhipeng Sun & Ruizhao Yang & Feng Geng & Li Wang & Lingda Wang & Jialiang Guo, 2023. "Analyzing the Formation and Evolution of Strike-Slip Faults and Their Controlling Effects on Hydrocarbon Migration and Charging: A Case Study of Tahe Area, Tarim Basin," Energies, MDPI, vol. 16(5), pages 1-29, March.
    3. Yawen Zhao & Guanghui Wu & Yintao Zhang & Nicola Scarselli & Wei Yan & Chong Sun & Jianfa Han, 2023. "The Strike-Slip Fault Effects on Tight Ordovician Reef-Shoal Reservoirs in the Central Tarim Basin (NW China)," Energies, MDPI, vol. 16(6), pages 1-14, March.
    4. Qingsong Tang & Shuhang Tang & Bing Luo & Xin Luo & Liang Feng & Siyao Li & Guanghui Wu, 2022. "Seismic Description of Deep Strike-Slip Fault Damage Zone by Steerable Pyramid Method in the Sichuan Basin, China," Energies, MDPI, vol. 15(21), pages 1-13, October.
    5. Lixin Chen & Zhenxue Jiang & Chong Sun & Bingshan Ma & Zhou Su & Xiaoguo Wan & Jianfa Han & Guanghui Wu, 2023. "An Overview of the Differential Carbonate Reservoir Characteristic and Exploitation Challenge in the Tarim Basin (NW China)," Energies, MDPI, vol. 16(15), pages 1-14, July.
    6. Qinghua Wang & Yintao Zhang & Zhou Xie & Yawen Zhao & Can Zhang & Chong Sun & Guanghui Wu, 2022. "The Advancement and Challenges of Seismic Techniques for Ultra-Deep Carbonate Reservoir Exploitation in the Tarim Basin of Northwestern China," Energies, MDPI, vol. 15(20), pages 1-13, October.
    7. Shibin Tang & Shun Ding & Jiaming Li & Chun Zhu & Leyu Cao, 2023. "An Improved Microseismic Signal Denoising Method of Rock Failure for Deeply Buried Energy Exploration," Energies, MDPI, vol. 16(5), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8137-:d:959633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.