IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8131-d959516.html
   My bibliography  Save this article

Seismic Description of Deep Strike-Slip Fault Damage Zone by Steerable Pyramid Method in the Sichuan Basin, China

Author

Listed:
  • Qingsong Tang

    (PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China)

  • Shuhang Tang

    (School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China)

  • Bing Luo

    (Chongqing Division, PetroChina Southwest Oil & Gasfield Company, Chongqing 400707, China)

  • Xin Luo

    (Chongqing Division, PetroChina Southwest Oil & Gasfield Company, Chongqing 400707, China)

  • Liang Feng

    (Chongqing Division, PetroChina Southwest Oil & Gasfield Company, Chongqing 400707, China)

  • Siyao Li

    (School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China)

  • Guanghui Wu

    (School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China)

Abstract

Large quantities of gas resources have been found in the Paleo-Mesozoic carbonate rocks in the Sichuan Basin. However, many wells cannot obtain high production in deep low porosity-permeability reservoirs. For this contribution, we provide a steerable pyramid method for identifying the fault damage zone in the Kaijiang–Liangping platform margin, which is infeasible by conventional seismic methods. The results show that steerable pyramid processing could enhance the seismic fault imaging and a series of NW-trending strike-slip faults are found along the trend of the carbonate platform margin. The steerable pyramid attribute presents distinct vertical and horizontal boundaries of the fault damage zone, and heterogeneous intensity of an un-through-going damage zone. The width of the fault damage zone is generally varied in the range of 100–500 m, and could be increased to more than 1000 m in the fault overlap zone, intersection area, and fault tips. Further, the fault damage zone plays a constructive role in the high gas production in the deep tight carbonate reservoir. The results suggest the steerable pyramid method is favorable for identifying the weak strike-slip faults and their damage zone. The width of the fault damage zone is closely related to fault displacement, and the much wider damage zone is generally influenced by the fault overlapping and interaction. The fractured reservoirs in the fault damage zone could be a new favorable exploitation domain in the Sichuan Basin.

Suggested Citation

  • Qingsong Tang & Shuhang Tang & Bing Luo & Xin Luo & Liang Feng & Siyao Li & Guanghui Wu, 2022. "Seismic Description of Deep Strike-Slip Fault Damage Zone by Steerable Pyramid Method in the Sichuan Basin, China," Energies, MDPI, vol. 15(21), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8131-:d:959516
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8131/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8131/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qinghua Wang & Yintao Zhang & Zhou Xie & Yawen Zhao & Can Zhang & Chong Sun & Guanghui Wu, 2022. "The Advancement and Challenges of Seismic Techniques for Ultra-Deep Carbonate Reservoir Exploitation in the Tarim Basin of Northwestern China," Energies, MDPI, vol. 15(20), pages 1-13, October.
    2. Rujun Wang & Jianping Yang & Lunjie Chang & Yintao Zhang & Chong Sun & Xiaoguo Wan & Guanghui Wu & Bingchen Bai, 2022. "3D Modeling of Fracture-Cave Reservoir from a Strike-Slip Fault-Controlled Carbonate Oilfield in Northwestern China," Energies, MDPI, vol. 15(17), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Luo & Siqi Chen & Jiawei Liu & Fei Li & Liang Feng & Siyao Li & Yonghong Wu & Guanghui Wu & Bin Luo, 2023. "The Fractured Permian Reservoir and Its Significance in the Gas Exploitation in the Sichuan Basin, China," Energies, MDPI, vol. 16(4), pages 1-13, February.
    2. Yuanlong Wei & Lingyun Zhao & Wei Liu & Xiong Zhang & Zhijun Guo & Zhangli Wu & Shenghui Yuan, 2022. "Coalbed Methane Reservoir Parameter Prediction and Sweet-Spot Comprehensive Evaluation Based on 3D Seismic Exploration: A Case Study in Western Guizhou Province, China," Energies, MDPI, vol. 16(1), pages 1-26, December.
    3. Yawen Zhao & Guanghui Wu & Yintao Zhang & Nicola Scarselli & Wei Yan & Chong Sun & Jianfa Han, 2023. "The Strike-Slip Fault Effects on Tight Ordovician Reef-Shoal Reservoirs in the Central Tarim Basin (NW China)," Energies, MDPI, vol. 16(6), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhipeng Sun & Ruizhao Yang & Feng Geng & Li Wang & Lingda Wang & Jialiang Guo, 2023. "Analyzing the Formation and Evolution of Strike-Slip Faults and Their Controlling Effects on Hydrocarbon Migration and Charging: A Case Study of Tahe Area, Tarim Basin," Energies, MDPI, vol. 16(5), pages 1-29, March.
    2. Xiao He & Guian Guo & Qingsong Tang & Guanghui Wu & Wei Xu & Bingshan Ma & Tianjun Huang & Weizhen Tian, 2022. "The Advances and Challenges of the Ediacaran Fractured Reservoir Development in the Central Sichuan Basin, China," Energies, MDPI, vol. 15(21), pages 1-14, November.
    3. Lixin Chen & Zhenxue Jiang & Chong Sun & Bingshan Ma & Zhou Su & Xiaoguo Wan & Jianfa Han & Guanghui Wu, 2023. "An Overview of the Differential Carbonate Reservoir Characteristic and Exploitation Challenge in the Tarim Basin (NW China)," Energies, MDPI, vol. 16(15), pages 1-14, July.
    4. Qinghua Wang & Yintao Zhang & Zhou Xie & Yawen Zhao & Can Zhang & Chong Sun & Guanghui Wu, 2022. "The Advancement and Challenges of Seismic Techniques for Ultra-Deep Carbonate Reservoir Exploitation in the Tarim Basin of Northwestern China," Energies, MDPI, vol. 15(20), pages 1-13, October.
    5. Yawen Zhao & Guanghui Wu & Yintao Zhang & Nicola Scarselli & Wei Yan & Chong Sun & Jianfa Han, 2023. "The Strike-Slip Fault Effects on Tight Ordovician Reef-Shoal Reservoirs in the Central Tarim Basin (NW China)," Energies, MDPI, vol. 16(6), pages 1-14, March.
    6. Bing He & Yicheng Liu & Chen Qiu & Yun Liu & Chen Su & Qingsong Tang & Weizhen Tian & Guanghui Wu, 2023. "The Strike-Slip Fault Effects on the Ediacaran Carbonate Tight Reservoirs in the Central Sichuan Basin, China," Energies, MDPI, vol. 16(10), pages 1-12, May.
    7. Shibin Tang & Shun Ding & Jiaming Li & Chun Zhu & Leyu Cao, 2023. "An Improved Microseismic Signal Denoising Method of Rock Failure for Deeply Buried Energy Exploration," Energies, MDPI, vol. 16(5), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8131-:d:959516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.