IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2197-d1079401.html
   My bibliography  Save this article

Synthesis of Biobased Composite Heterogeneous Catalyst for Biodiesel Production Using Simplex Lattice Design Mixture: Optimization Process by Taguchi Method

Author

Listed:
  • Christopher Tunji Oloyede

    (Department of Agricultural Engineering, Ladoke Akintola University of Technology, Ogbomoso 210214, Nigeria)

  • Simeon Olatayo Jekayinfa

    (Department of Agricultural Engineering, Ladoke Akintola University of Technology, Ogbomoso 210214, Nigeria)

  • Abass Olanrewaju Alade

    (Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso 210214, Nigeria)

  • Oyetola Ogunkunle

    (Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, Johannesburg 2028, South Africa)

  • Opeyeolu Timothy Laseinde

    (Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, Johannesburg 2028, South Africa)

  • Ademola Oyejide Adebayo

    (Department of Agricultural Engineering, Ladoke Akintola University of Technology, Ogbomoso 210214, Nigeria)

  • Adeola Ibrahim Abdulkareem

    (Department of Agricultural Engineering, Ladoke Akintola University of Technology, Ogbomoso 210214, Nigeria)

  • Ghassan Fadhil Smaisim

    (Department of Mechanical Engineering, Faculty of Engineering, University of Kufa, Najaf 54001, Iraq
    Nanotechnology and Advanced Materials Research Unit (NAMRU), Faculty of Engineering, University of Kufa, Najaf 54001, Iraq)

  • I.M.R. Fattah

    (Centre for Technology in Water and Wastewater (CTWW), Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia)

Abstract

The use of biobased heterogeneous catalysts made from agricultural waste for producing biodiesel has gained attention for its potential to create a sustainable and low-cost process. The blending of two or more biomass residues to create more viable biobased catalysts is still in its early stages. In this study, a Biobased Composite Heterogeneous Catalyst (CHC) was made by blending the shells of periwinkle (PWS), melon seed-husk (MSH), and locust bean pod-husk (LBP) at a mixing ratio of 67:17:17 using Simplex Lattice Design Mixture, that was then calcined for 4 h at 800 °C. The chemical, structural, and morphological components of the CHC were characterized via XRF, XRD, SEM-EDX, BET, TGA/DSC, and FTIR to assess its catalytic potential. The CHC was employed to synthesize biodiesel from palm kernel oil, and the process optimization was conducted using the Taguchi approach. The XRF analysis showed that the catalyst had 69.049 of Calcium (Ca) and 9.472 of potassium (K) in their elemental and oxide states as 61.592% calcium oxide and 7.919% potassium oxide. This was also supported by the EDX result, that showed an appreciable value of 58.00% of Ca and 2.30% of magnesium, that perhaps provided the active site in the transesterification reaction to synthesize biodiesel. The morphological and physisorption isotherms via SEM and BET showed mesoporous structures in the CHC that were made up of nanoparticles. A high maximum biodiesel yield of 90.207 wt.% was attained under the optimized process conditions. The catalyst could be reused for up to four cycles, and the biodiesel produced met both ASTM D6751 and EN 14214 standards for biodiesel. This study demonstrates that blending PWS, MSH, and LBP waste materials can produce high-quality biodiesel without the need for additional catalysts.

Suggested Citation

  • Christopher Tunji Oloyede & Simeon Olatayo Jekayinfa & Abass Olanrewaju Alade & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & Ademola Oyejide Adebayo & Adeola Ibrahim Abdulkareem & Ghassan Fadhil Sm, 2023. "Synthesis of Biobased Composite Heterogeneous Catalyst for Biodiesel Production Using Simplex Lattice Design Mixture: Optimization Process by Taguchi Method," Energies, MDPI, vol. 16(5), pages 1-26, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2197-:d:1079401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olatundun, Esther Adedayo & Borokini, Omowumi Oluwatumininu & Betiku, Eriola, 2020. "Cocoa pod husk-plantain peel blend as a novel green heterogeneous catalyst for renewable and sustainable honne oil biodiesel synthesis: A case of biowastes-to-wealth," Renewable Energy, Elsevier, vol. 166(C), pages 163-175.
    2. Tan, Yie Hua & Abdullah, Mohammad Omar & Nolasco-Hipolito, Cirilo, 2015. "The potential of waste cooking oil-based biodiesel using heterogeneous catalyst derived from various calcined eggshells coupled with an emulsification technique: A review on the emission reduction and," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 589-603.
    3. Abdullah Nsair & Senem Onen Cinar & Ayah Alassali & Hani Abu Qdais & Kerstin Kuchta, 2020. "Operational Parameters of Biogas Plants: A Review and Evaluation Study," Energies, MDPI, vol. 13(15), pages 1-27, July.
    4. Dhawane, Sumit H. & Kumar, Tarkeshwar & Halder, Gopinath, 2016. "Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method," Renewable Energy, Elsevier, vol. 89(C), pages 506-514.
    5. Miladinović, Marija R. & Zdujić, Miodrag V. & Veljović, Djordje N. & Krstić, Jugoslav B. & Banković-Ilić, Ivana B. & Veljković, Vlada B. & Stamenković, Olivera S., 2020. "Valorization of walnut shell ash as a catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 147(P1), pages 1033-1043.
    6. Anietie O. Etim & Eriola Betiku & Sheriff O. Ajala & Peter J. Olaniyi & Tunde V. Ojumu, 2018. "Potential of Ripe Plantain Fruit Peels as an Ecofriendly Catalyst for Biodiesel Synthesis: Optimization by Artificial Neural Network Integrated with Genetic Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    7. Suryaputra, Wijaya & Winata, Indra & Indraswati, Nani & Ismadji, Suryadi, 2013. "Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 50(C), pages 795-799.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anderson Breno Souza & Alvaro Antonio Villa Ochoa & José Ângelo Peixoto da Costa & Gustavo de Novaes Pires Leite & Héber Claudius Nunes Silva & Andrezza Carolina Carneiro Tómas & David Campos Barbosa , 2023. "A Review of Tropical Organic Materials for Biodiesel as a Substitute Energy Source in Internal Combustion Engines: A Viable Solution?," Energies, MDPI, vol. 16(9), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
    2. Tan, Yie Hua & Abdullah, Mohammad Omar & Kansedo, Jibrail & Mubarak, Nabisab Mujawar & Chan, Yen San & Nolasco-Hipolito, Cirilo, 2019. "Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones," Renewable Energy, Elsevier, vol. 139(C), pages 696-706.
    3. Jisieike, Chiazor Faustina & Ishola, Niyi Babatunde & Latinwo, Lekan M. & Betiku, Eriola, 2023. "Crude rubber seed oil esterification using a solid catalyst: Optimization by hybrid adaptive neuro-fuzzy inference system and response surface methodology," Energy, Elsevier, vol. 263(PB).
    4. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    5. Daimary, Niran & Boruah, Pankaj & Eldiehy, Khalifa S.H. & Pegu, Tapan & Bardhan, Pritam & Bora, Utpal & Mandal, Manabendra & Deka, Dhanapati, 2022. "Musa acuminata peel: A bioresource for bio-oil and by-product utilization as a sustainable source of renewable green catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 187(C), pages 450-462.
    6. Olatundun, Esther Adedayo & Borokini, Omowumi Oluwatumininu & Betiku, Eriola, 2020. "Cocoa pod husk-plantain peel blend as a novel green heterogeneous catalyst for renewable and sustainable honne oil biodiesel synthesis: A case of biowastes-to-wealth," Renewable Energy, Elsevier, vol. 166(C), pages 163-175.
    7. Subramonia Pillai, N. & Kannan, P. Seeni & Vettivel, S.C. & Suresh, S., 2017. "Optimization of transesterification of biodiesel using green catalyst derived from Albizia Lebbeck Pods by mixture design," Renewable Energy, Elsevier, vol. 104(C), pages 185-196.
    8. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz, 2021. "The Effect of Static Magnetic Field on Methanogenesis in the Anaerobic Digestion of Municipal Sewage Sludge," Energies, MDPI, vol. 14(3), pages 1-16, January.
    9. Daabo, Ahmed M. & Saeed, Liqaa I. & Altamer, Marwa H. & Fadhil, Abdelrahman B. & Badawy, Tawfik, 2022. "The production of bio-based fuels and carbon catalysts from chicken waste," Renewable Energy, Elsevier, vol. 201(P1), pages 21-34.
    10. Yermek Abilmazhinov & Kapan Shakerkhan & Vladimir Meshechkin & Yerzhan Shayakhmetov & Nurzhan Nurgaliyev & Anuarbek Suychinov, 2023. "Mathematical Modeling for Evaluating the Sustainability of Biogas Generation through Anaerobic Digestion of Livestock Waste," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    11. Jaiyen, Siyada & Naree, Thikumporn & Ngamcharussrivichai, Chawalit, 2015. "Comparative study of natural dolomitic rock and waste mixed seashells as heterogeneous catalysts for the methanolysis of palm oil to biodiesel," Renewable Energy, Elsevier, vol. 74(C), pages 433-440.
    12. Katarzyna Ignatowicz & Gabriel Filipczak & Barbara Dybek & Grzegorz Wałowski, 2023. "Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples," Energies, MDPI, vol. 16(2), pages 1-17, January.
    13. Gabriele Di Giacomo, 2021. "Material and Energy Recovery from the Final Disposal of Organic Waste," Energies, MDPI, vol. 14(24), pages 1-2, December.
    14. Miladinović, Marija R. & Krstić, Jugoslav B. & Zdujić, Miodrag V. & Veselinović, Ljiljana M. & Veljović, Djordje N. & Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2022. "Transesterification of used cooking sunflower oil catalyzed by hazelnut shell ash," Renewable Energy, Elsevier, vol. 183(C), pages 103-113.
    15. John, Monnie & Abdullah, Mohammad Omar & Hua, Tan Yie & Nolasco-Hipólito, Cirilo, 2021. "Techno-economical and energy analysis of sunflower oil biodiesel synthesis assisted with waste ginger leaves derived catalysts," Renewable Energy, Elsevier, vol. 168(C), pages 815-828.
    16. Adepoju, T.F. & Ibeh, M.A. & Udoetuk, E.N. & Babatunde, E.O., 2021. "Quaternary blend of Carica papaya - Citrus sinesis - Hibiscus sabdariffa - Waste used oil for biodiesel synthesis using CaO-based catalyst derived from binary mix of Lattorina littorea and Mactra cora," Renewable Energy, Elsevier, vol. 171(C), pages 22-33.
    17. Seffati, Kambiz & Esmaeili, Hossein & Honarvar, Bizhan & Esfandiari, Nadia, 2020. "AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat," Renewable Energy, Elsevier, vol. 147(P1), pages 25-34.
    18. Senem Onen Cinar & Abdullah Nsair & Nils Wieczorek & Kerstin Kuchta, 2022. "Long-Term Assessment of Temperature Management in an Industrial Scale Biogas Plant," Sustainability, MDPI, vol. 14(2), pages 1-17, January.
    19. Thangarasu, Vinoth & M, Angkayarkan Vinayakaselvi & Ramanathan, Anand, 2021. "Artificial neural network approach for parametric investigation of biodiesel synthesis using biocatalyst and engine characteristics of diesel engine fuelled with Aegle Marmelos Correa biodiesel," Energy, Elsevier, vol. 230(C).
    20. Yusuff, Adeyinka S. & Bhonsle, Aman K. & Bangwal, Dinesh P. & Atray, Neeraj, 2021. "Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment," Renewable Energy, Elsevier, vol. 177(C), pages 1253-1264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2197-:d:1079401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.