IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2166-d1078399.html
   My bibliography  Save this article

Reservoir Characteristics of Normally Pressured Shales from the Periphery of Sichuan Basin: Insights into the Pore Development Mechanism

Author

Listed:
  • Bing Feng

    (Guizhou Shale Gas Exploration and Development Co. Ltd., Zheng’an 563499, China)

  • Jiliang Yu

    (Guizhou Shale Gas Exploration and Development Co. Ltd., Zheng’an 563499, China)

  • Feng Yang

    (Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences (Wuhan), Wuhan 430074, China)

  • Zhiyao Zhang

    (Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences (Wuhan), Wuhan 430074, China)

  • Shang Xu

    (Shandong Provincial Key Laboratory of Deep Oil & Gas, China University of Petroleum (East China), Qingdao 266580, China)

Abstract

Reservoir characteristics and the occurrence mechanism of shale gas outside of the Sichuan Basin are the research hotspots of normally pressured shales in China. Taking shales on the Anchang syncline from the periphery of the Sichuan Basin as an example, X-ray diffraction, organic geochemistry, and rock physical experiments were carried out to analyze the reservoir characteristics and their main geological controls on the normally pressured shales. The mineralogical results show that the studied shales from the Anchang syncline are mainly siliceous shales with a high quartz content (average of 57%). The quartz content of these normally pressured shales is of biological origin, as shown by the positive correlation between the quartz and organic carbon (TOC) contents. The average porosity of the studied shales is about 2.9%, which is lower than shales inside the Sichuan Basin. Organic matter pores are likely the primary storage space of the normally pressured shale gas, as shown by the positive relationship between the TOC content and porosity. However, scanning electron microscopy observations on the studied shales show that the pores in these normally pressured shales are poorly preserved; many pores have been subjected to compression and deformation due to tectonic movements. Compared to shales inside the Sichuan Basin, the effective thickness of shales outside of the Sichuan Basin is thin and the stratum dip is large. Thus, shale gas outside of the Sichuan Basin is apt to escape laterally along the bedding of the strata. After losing a significant amount of shale gas, the gas pressure decreases to normal pressure, which makes it difficult for the pores to resist compaction from the overlying strata. This is probably why most shale gas reservoirs outside of the Sichuan Basin are normally pressured, while the shale strata inside the Sichuan Basin are commonly overpressured. This study provides insights to understand the pore development and hydrocarbon occurrence on normally pressured shales outside of the Sichuan Basin.

Suggested Citation

  • Bing Feng & Jiliang Yu & Feng Yang & Zhiyao Zhang & Shang Xu, 2023. "Reservoir Characteristics of Normally Pressured Shales from the Periphery of Sichuan Basin: Insights into the Pore Development Mechanism," Energies, MDPI, vol. 16(5), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2166-:d:1078399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2166/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2166/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shengxiu Wang & Jia Wang & Yuelei Zhang & Dahua Li & Weiwei Jiao & Jinxi Wang & Zhian Lei & Zhongqiang Yu & Xiaojun Zha & Xianfeng Tan, 2021. "Relationship between Organic Geochemistry and Reservoir Characteristics of the Wufeng-Longmaxi Formation Shale in Southeastern Chongqing, SW China," Energies, MDPI, vol. 14(20), pages 1-15, October.
    2. Yuying Zhang & Shu Jiang & Zhiliang He & Yuchao Li & Dianshi Xiao & Guohui Chen & Jianhua Zhao, 2021. "Coupling between Source Rock and Reservoir of Shale Gas in Wufeng-Longmaxi Formation in Sichuan Basin, South China," Energies, MDPI, vol. 14(9), pages 1-16, May.
    3. Hongming Zhan & Feifei Fang & Xizhe Li & Zhiming Hu & Jie Zhang, 2022. "Shale Reservoir Heterogeneity: A Case Study of Organic-Rich Longmaxi Shale in Southern Sichuan, China," Energies, MDPI, vol. 15(3), pages 1-14, January.
    4. Zhuo Li & Zhenxue Jiang & Hailong Yu & Zhikai Liang, 2019. "Organic Matter Pore Characterization of the Wufeng-Longmaxi Shales from the Fuling Gas Field, Sichuan Basin: Evidence from Organic Matter Isolation and Low-Pressure CO 2 and N 2 Adsorption," Energies, MDPI, vol. 12(7), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangbo Lu & Feng Yang & Ting’an Bai & Bing Han & Yongchao Lu & Han Gao, 2022. "Shale Oil Occurrence Mechanisms: A Comprehensive Review of the Occurrence State, Occurrence Space, and Movability of Shale Oil," Energies, MDPI, vol. 15(24), pages 1-16, December.
    2. Xiaoyan Zou & Xianqing Li & Jizhen Zhang & Huantong Li & Man Guo & Pei Zhao, 2021. "Characteristics of Pore Structure and Gas Content of the Lower Paleozoic Shale from the Upper Yangtze Plate, South China," Energies, MDPI, vol. 14(22), pages 1-29, November.
    3. Wenchao Liu & Yuejie Yang & Chengcheng Qiao & Chen Liu & Boyu Lian & Qingwang Yuan, 2023. "Progress of Seepage Law and Development Technologies for Shale Condensate Gas Reservoirs," Energies, MDPI, vol. 16(5), pages 1-30, March.
    4. Golam Muktadir & Moh’d Amro & Nicolai Kummer & Carsten Freese & Khizar Abid, 2021. "Application of X-ray Diffraction (XRD) and Rock–Eval Analysis for the Evaluation of Middle Eastern Petroleum Source Rock," Energies, MDPI, vol. 14(20), pages 1-16, October.
    5. Ping Guo & Jian Zheng & Chao Dong & Zhouhua Wang & Hengjie Liao & Haijun Fan, 2024. "Invasion Characteristics of Marginal Water under the Control of High-Permeability Zones and Its Influence on the Development of Vertical Heterogeneous Gas Reservoirs," Energies, MDPI, vol. 17(18), pages 1-19, September.
    6. Xuewen Shi & Wei Wu & Yuguang Shi & Zhenxue Jiang & Lianbo Zeng & Shijie Ma & Xindi Shao & Xianglu Tang & Majia Zheng, 2022. "Influence of Multi-Period Tectonic Movement and Faults on Shale Gas Enrichment in Luzhou Area of Sichuan Basin, China," Energies, MDPI, vol. 15(18), pages 1-25, September.
    7. Jingkui Mi & Wei Wu & Di Zhu & Ziqi Feng, 2022. "Effect of Methane Cracking on Carbon Isotope Reversal and the Production of Over-Mature Shale Gas," Energies, MDPI, vol. 15(17), pages 1-12, August.
    8. Xueang Zhang & Zhichao Yang & Xiaoyan Li, 2024. "Research on the Effect of Fracture Angle on Neutron Logging Results of Shale Gas Reservoirs," Energies, MDPI, vol. 17(13), pages 1-18, July.
    9. Ahmed Fatah & Ziad Bennour & Hisham Ben Mahmud & Raoof Gholami & Md. Mofazzal Hossain, 2020. "A Review on the Influence of CO 2 /Shale Interaction on Shale Properties: Implications of CCS in Shales," Energies, MDPI, vol. 13(12), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2166-:d:1078399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.