IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3342-d1430780.html
   My bibliography  Save this article

Research on the Effect of Fracture Angle on Neutron Logging Results of Shale Gas Reservoirs

Author

Listed:
  • Xueang Zhang

    (School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China)

  • Zhichao Yang

    (School of Geophysics and Measurement-Control Technology, East China University of Technology, Nanchang 330013, China)

  • Xiaoyan Li

    (School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China)

Abstract

Fracture structures are important natural gas transport spaces in shale gas reservoirs, and their storage state in shale gas reservoirs seriously affects gas production and extraction efficiency. This work uses numerical modeling techniques to investigate the logging response law of the thermal and epithermal neutrons in the gas-containing fracture environment at various angles, applying neutron logging as a technical method. To increase the precision of the evaluation of the natural gas storage condition in shale gas reservoirs, the angle of the fractures’ neutron logging data is analyzed. It is found that even in an environment with the same porosity of the fractures, there are significant differences in the logging results due to the different angles of the fracture alignment: 1. the neutron counts in the high-angle (70–90°) fracture environment are 2.25 times higher than in the low-angle (0–20°), but the diffusion area of the neutrons is only 10.58% of that in the low-angle (0–20°); 2. in the neutron energy spectrum, neutron counts are spreading to the high-energy region (7–13 MeV) along with the increase in the angle of the fracture, and the feature is especially prominent in the approximately vertical (60–90°) fracture environment, which is an increase of 528.12% in comparison with the counts in the approximately horizontal angle (0–30°) environment. The main reason for these differences is the variation in the volume of the fracture within the source radiation. This volumetric difference results from the variation in fracture angles (even though the fracture porosity is the same). In view of the above phenomenon, this paper proposes the concept of “effective fracture volume”, which can intuitively reflect the degree of influence of fracture angle on neutron logging results. Further, based on the unique characteristics of shale gas reservoirs and neutrons, this paper provides important theoretical support for the modification of the porosity of the field operation, the evaluation of the physical characteristics of the gas endowment space, and the assessment.

Suggested Citation

  • Xueang Zhang & Zhichao Yang & Xiaoyan Li, 2024. "Research on the Effect of Fracture Angle on Neutron Logging Results of Shale Gas Reservoirs," Energies, MDPI, vol. 17(13), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3342-:d:1430780
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3342/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3342/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongming Zhan & Feifei Fang & Xizhe Li & Zhiming Hu & Jie Zhang, 2022. "Shale Reservoir Heterogeneity: A Case Study of Organic-Rich Longmaxi Shale in Southern Sichuan, China," Energies, MDPI, vol. 15(3), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenchao Liu & Yuejie Yang & Chengcheng Qiao & Chen Liu & Boyu Lian & Qingwang Yuan, 2023. "Progress of Seepage Law and Development Technologies for Shale Condensate Gas Reservoirs," Energies, MDPI, vol. 16(5), pages 1-30, March.
    2. Yangbo Lu & Feng Yang & Ting’an Bai & Bing Han & Yongchao Lu & Han Gao, 2022. "Shale Oil Occurrence Mechanisms: A Comprehensive Review of the Occurrence State, Occurrence Space, and Movability of Shale Oil," Energies, MDPI, vol. 15(24), pages 1-16, December.
    3. Ping Guo & Jian Zheng & Chao Dong & Zhouhua Wang & Hengjie Liao & Haijun Fan, 2024. "Invasion Characteristics of Marginal Water under the Control of High-Permeability Zones and Its Influence on the Development of Vertical Heterogeneous Gas Reservoirs," Energies, MDPI, vol. 17(18), pages 1-19, September.
    4. Bing Feng & Jiliang Yu & Feng Yang & Zhiyao Zhang & Shang Xu, 2023. "Reservoir Characteristics of Normally Pressured Shales from the Periphery of Sichuan Basin: Insights into the Pore Development Mechanism," Energies, MDPI, vol. 16(5), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3342-:d:1430780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.