IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1924-d1069095.html
   My bibliography  Save this article

A Review on Fullerene Derivatives with Reduced Electron Affinity as Acceptor Materials for Organic Solar Cells

Author

Listed:
  • Alexander V. Mumyatov

    (Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, 142432 Chernogolovka, Moscow Region, Russia)

  • Pavel A. Troshin

    (Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, 142432 Chernogolovka, Moscow Region, Russia)

Abstract

Organic solar cells (OSCs) represent a promising emerging photovoltaic technology offering such benefits as light weight, mechanical flexibility, semitransparency, environmental friendliness and aesthetic design of solar panels. Furthermore, organic solar cells can be produced using scalable and high-throughput solution-based printing and coating technologies, which are expected to lead to very low product costs. Fullerene derivatives have been used as acceptor materials in virtually all efficient organic solar cells for more than two decades, following the demonstration of the first proof-of-concept devices in the middle of 1990s. Still, the power conversion efficiencies of fullerene-based organic solar cells became stuck at around 12% due to the suboptimal optoelectronic properties of conventional fullerene acceptors. Therefore, the latest efficiency records (>18%) for organic solar cells were set using different types of non-fullerene acceptor (NFA) materials with tailorable properties. However, NFA materials appeared to be very sensitive to light, thus impairing the operational stability of OSCs. On the contrary, there is growing evidence that rationally designed fullerene-based acceptors enhance the photostability of conjugated polymers and also NFAs, when used in ternary blends. Hence, a renaissance of fullerene-based materials is currently expected in the context of their use in multicomponent organic solar cells (e.g., as stabilizers) and also lead halide perovskite solar cells, where they play an important role of electron transport materials. The success in both of these applications requires the tunability of optoelectronic characteristics of fullerene derivatives. In particular, electron affinity of the fullerene cage has to be reduced in many cases to match the energy levels of other absorber material(s). Herein, we present a systematic review of different strategies implemented to reduce the acceptor strength of the fullerene derivatives and the results of their performance evaluation in OSCs with model conjugated polymers. Particular attention is paid to correlations between the chemical structure of organic addends and their influence on the electronic properties of the fullerene core. We believe this review would be valuable to researchers working on the rational design of new fullerene-based materials with tailored properties for photovoltaic and other electronic applications.

Suggested Citation

  • Alexander V. Mumyatov & Pavel A. Troshin, 2023. "A Review on Fullerene Derivatives with Reduced Electron Affinity as Acceptor Materials for Organic Solar Cells," Energies, MDPI, vol. 16(4), pages 1-60, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1924-:d:1069095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1924/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1924/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joachim Vollbrecht & Viktor V. Brus, 2021. "Effects of Recombination Order on Open-Circuit Voltage Decay Measurements of Organic and Perovskite Solar Cells," Energies, MDPI, vol. 14(16), pages 1-16, August.
    2. Jingbo Zhao & Yunke Li & Guofang Yang & Kui Jiang & Haoran Lin & Harald Ade & Wei Ma & He Yan, 2016. "Efficient organic solar cells processed from hydrocarbon solvents," Nature Energy, Nature, vol. 1(2), pages 1-7, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hadipour, Hassan & Amiri, Maghsoud & Sharifi, Mani, 2019. "Redundancy allocation in series-parallel systems under warm standby and active components in repairable subsystems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    2. Yu Jiang & Youjun Bai & Shenghao Wang, 2023. "Organic Solar Cells: From Fundamental to Application," Energies, MDPI, vol. 16(5), pages 1-3, February.
    3. Jun Young Kim, 2019. "Determining the Effect of Different Heat Treatments on the Electrical and Morphological Characteristics of Polymer Solar Cells," Energies, MDPI, vol. 12(24), pages 1-8, December.
    4. Giovanni Landi & Sergio Pagano & Heinz Christoph Neitzert & Costantino Mauro & Carlo Barone, 2023. "Noise Spectroscopy: A Tool to Understand the Physics of Solar Cells," Energies, MDPI, vol. 16(3), pages 1-37, January.
    5. Daniel Corzo & Diego Rosas-Villalva & Amruth C & Guillermo Tostado-Blázquez & Emily Bezerra Alexandre & Luis Huerta Hernandez & Jianhua Han & Han Xu & Maxime Babics & Stefaan Wolf & Derya Baran, 2023. "High-performing organic electronics using terpene green solvents from renewable feedstocks," Nature Energy, Nature, vol. 8(1), pages 62-73, January.
    6. Hryhorii P. Parkhomenko & Erik O. Shalenov & Zarina Umatova & Karlygash N. Dzhumagulova & Askhat N. Jumabekov, 2022. "Fabrication of Flexible Quasi-Interdigitated Back-Contact Perovskite Solar Cells," Energies, MDPI, vol. 15(9), pages 1-12, April.
    7. Kumavat, Priyanka P. & Sonar, Prashant & Dalal, Dipak S., 2017. "An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1262-1287.
    8. Dawid Wojcieszak & Maciej Zaborowicz & Jacek Przybył & Piotr Boniecki & Aleksander Jędruś, 2021. "Assessment of the Content of Dry Matter and Dry Organic Matter in Compost with Neural Modelling Methods," Agriculture, MDPI, vol. 11(4), pages 1-12, April.
    9. Giovanni Landi & Carlo Barone & Costantino Mauro & Antonietta De Sio & Giovanni Carapella & Heinz Christoph Neitzert & Sergio Pagano, 2017. "Probing Temperature-Dependent Recombination Kinetics in Polymer:Fullerene Solar Cells by Electric Noise Spectroscopy," Energies, MDPI, vol. 10(10), pages 1-14, September.
    10. Kamel, Michael S.A. & Al-jumaili, Ahmed & Oelgemöller, Michael & Jacob, Mohan V., 2022. "Inorganic nanoparticles to overcome efficiency inhibitors of organic photovoltaics: An in-depth review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    11. Guo, Lukai & Wang, Hao, 2022. "Non-intrusive movable energy harvesting devices: Materials, designs, and their prospective uses on transportation infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1924-:d:1069095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.