IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4800-d609914.html
   My bibliography  Save this article

Effects of Recombination Order on Open-Circuit Voltage Decay Measurements of Organic and Perovskite Solar Cells

Author

Listed:
  • Joachim Vollbrecht

    (Soft Matter Physics Group, Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany)

  • Viktor V. Brus

    (Department of Physics, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan)

Abstract

Non-geminate recombination, as one of the most relevant loss mechanisms in organic and perovskite solar cells, deserves special attention in research efforts to further increase device performance. It can be subdivided into first, second, and third order processes, which can be elucidated by the effects that they have on the time-dependent open-circuit voltage decay. In this study, analytical expressions for the open-circuit voltage decay exhibiting one of the aforementioned recombination mechanisms were derived. It was possible to support the analytical models with experimental examples of three different solar cells, each of them dominated either by first (PBDBT:CETIC-4F), second (PM6:Y6), or third (irradiated CH 3 NH 3 PbI 3 ) order recombination. Furthermore, a simple approach to estimate the dominant recombination process was also introduced and tested on these examples. Moreover, limitations of the analytical models and the measurement technique itself were discussed.

Suggested Citation

  • Joachim Vollbrecht & Viktor V. Brus, 2021. "Effects of Recombination Order on Open-Circuit Voltage Decay Measurements of Organic and Perovskite Solar Cells," Energies, MDPI, vol. 14(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4800-:d:609914
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4800/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4800/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jia Yao & Beibei Qiu & Zhi-Guo Zhang & Lingwei Xue & Rui Wang & Chunfeng Zhang & Shanshan Chen & Qiuju Zhou & Chenkai Sun & Changduk Yang & Min Xiao & Lei Meng & Yongfang Li, 2020. "Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hryhorii P. Parkhomenko & Erik O. Shalenov & Zarina Umatova & Karlygash N. Dzhumagulova & Askhat N. Jumabekov, 2022. "Fabrication of Flexible Quasi-Interdigitated Back-Contact Perovskite Solar Cells," Energies, MDPI, vol. 15(9), pages 1-12, April.
    2. Alexander V. Mumyatov & Pavel A. Troshin, 2023. "A Review on Fullerene Derivatives with Reduced Electron Affinity as Acceptor Materials for Organic Solar Cells," Energies, MDPI, vol. 16(4), pages 1-60, February.
    3. Yu Jiang & Youjun Bai & Shenghao Wang, 2023. "Organic Solar Cells: From Fundamental to Application," Energies, MDPI, vol. 16(5), pages 1-3, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanyuan Jiang & Yixin Li & Feng Liu & Wenxuan Wang & Wenli Su & Wuyue Liu & Songjun Liu & Wenkai Zhang & Jianhui Hou & Shengjie Xu & Yuanping Yi & Xiaozhang Zhu, 2023. "Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Xuelin Wang & Qianqian Sun & Jinhua Gao & Jian Wang & Chunyu Xu & Xiaoling Ma & Fujun Zhang, 2021. "Recent Progress of Organic Photovoltaics with Efficiency over 17%," Energies, MDPI, vol. 14(14), pages 1-27, July.
    3. Guangpei Sun & Xin Jiang & Xiaojun Li & Lei Meng & Jinyuan Zhang & Shucheng Qin & Xiaolei Kong & Jing Li & Jingming Xin & Wei Ma & Yongfang Li, 2022. "High performance polymerized small molecule acceptor by synergistic optimization on π-bridge linker and side chain," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4800-:d:609914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.