IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1910-d1068894.html
   My bibliography  Save this article

A Comprehensive Assessment of Clean Coal Fuels for Residential Use to Replace Bituminous Raw Coal

Author

Listed:
  • Yi Wang

    (School of Chemical Engineering, Northwest University, Xi’an 710069, China
    Shaanxi Key Laboratory for Carbon Neutral Technology, Xi’an 710069, China)

  • Bin Liang

    (Shandong Energy Group Co., Ltd., Jinan 250014, China)

  • Dong Li

    (School of Chemical Engineering, Northwest University, Xi’an 710069, China
    Shaanxi Key Laboratory for Carbon Neutral Technology, Xi’an 710069, China)

  • Hua’an Zheng

    (School of Chemical Engineering, Northwest University, Xi’an 710069, China
    Shaanxi Key Laboratory for Carbon Neutral Technology, Xi’an 710069, China)

  • Yuan Lei

    (School of Chemical Engineering, Northwest University, Xi’an 710069, China
    Shaanxi Key Laboratory for Carbon Neutral Technology, Xi’an 710069, China)

  • Haipeng Teng

    (School of Chemical Engineering, Northwest University, Xi’an 710069, China
    Shaanxi Key Laboratory for Carbon Neutral Technology, Xi’an 710069, China)

  • Adnan Raza Altaf

    (School of Engineering, Huazhong Agricultural University, Wuhan 430070, China)

Abstract

Residential coal combustion is a major source of air pollution in developing countries, including China. Indeed, precisely measuring the real-time emission of major air pollutants is often challenging and can hardly be repeated at a lab-scale. In this study, for the first time, two clean coals initiated from raw bituminous coal were burned for real-time estimation of air pollution characteristics and their thermal efficiencies in different stoves. Moreover, thermodynamic equilibrium simulations were investigated for slagging parameters using Factsage 7.1 at reaction temperature 800~1600 °C. Results revealed that the firepower of clean coals (Briquetted coal and Semi-coke) was much higher (2.2 kW and 2.1 kW) than raw coal (1.8 kW) in a traditional stove. However, the thermal efficiencies were remarkably increased (13.3% and 13.5%) in an improved stove for briquetted coal and semi-coke, respectively. The emission of major air pollutants including carbon monoxide (CO), sulfur dioxide (SO 2 ), particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), non-methane hydrocarbons (NMHCs) from both coal and semi-coke was significantly reduced. Thermodynamic equilibrium calculations indicate that briquetted coal is not susceptible to slagging under the reaction conditions in the household stove. The current study provides guidance for the selection of alternative and efficient clean coal fuels in rural areas for household purposes coupled with public health and safety.

Suggested Citation

  • Yi Wang & Bin Liang & Dong Li & Hua’an Zheng & Yuan Lei & Haipeng Teng & Adnan Raza Altaf, 2023. "A Comprehensive Assessment of Clean Coal Fuels for Residential Use to Replace Bituminous Raw Coal," Energies, MDPI, vol. 16(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1910-:d:1068894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingchao, Zhang & Kotani, Koji & Saijo, Tatsuyoshi, 2019. "Low-quality or high-quality coal? Household energy choice in rural Beijing," Energy Economics, Elsevier, vol. 78(C), pages 81-90.
    2. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Leszek Mieszkalski & Joanna Wichłacz, 2020. "Low Emissions Resulting from Combustion of Forest Biomass in a Small Scale Heating Device," Energies, MDPI, vol. 13(20), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaqi Tian & Bonan Huang & Qiuli Wang & Pengbo Du & Yameng Zhang & Bangpeng He, 2023. "A Multi-Agent Integrated Energy Trading Strategy Based on Carbon Emission/Green Certificate Equivalence Interaction," Sustainability, MDPI, vol. 15(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magdalena Tutak & Jarosław Brodny & Peter Bindzár, 2021. "Assessing the Level of Energy and Climate Sustainability in the European Union Countries in the Context of the European Green Deal Strategy and Agenda 2030," Energies, MDPI, vol. 14(6), pages 1-32, March.
    2. John Eakins & Bernadette Power & Gordon Sirr, 2024. "An Analysis of Households Choice of Solid Fuels as a Primary and Supplementary Heating Fuel," The Energy Journal, , vol. 45(2), pages 91-109, March.
    3. Zhang Jingchao & Koji Kotani & Tatsuyoshi Saijo, 2021. "Are societies becoming proself? A topographical difference under fast urbanization in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12976-12993, September.
    4. Nguyen, Trung Thanh & Nguyen, Thanh-Tung & Hoang, Viet-Ngu & Wilson, Clevo & Managi, Shunsuke, 2019. "Energy transition, poverty and inequality in Vietnam," Energy Policy, Elsevier, vol. 132(C), pages 536-548.
    5. Przemysław Rybiński & Bartłomiej Syrek & Mirosław Szwed & Dariusz Bradło & Witold Żukowski & Anna Marzec & Magdalena Śliwka-Kaszyńska, 2021. "Influence of Thermal Decomposition of Wood and Wood-Based Materials on the State of the Atmospheric Air. Emissions of Toxic Compounds and Greenhouse Gases," Energies, MDPI, vol. 14(11), pages 1-14, June.
    6. Nguyen, Trung Thanh & Nguyen, Thanh-Tung & Hoang, Viet-Ngu & Wilson, Clevo, 2019. "Energy transition, poverty and inequality: panel evidence from Vietnam," MPRA Paper 107182, University Library of Munich, Germany, revised 10 May 2019.
    7. Xu, Shuo & Ge, Jianping, 2020. "Sustainable shifting from coal to gas in North China: An analysis of resident satisfaction," Energy Policy, Elsevier, vol. 138(C).
    8. Zeng, Jingjing & Bao, Rui & McFarland, Michael, 2022. "Clean energy substitution: The effect of transitioning from coal to gas on air pollution," Energy Economics, Elsevier, vol. 107(C).
    9. Dingqiang Sun & Xinyue Yang & Huanguang Qiu, 2022. "Off-farm work and rural residential energy transition: a farm-household model and empirical evidence from China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 14(4), pages 816-831, August.
    10. Bowen Da & Chuanzhe Liu & Nana Liu & Yufei Xia & Fangming Xie, 2019. "Coal-Electric Power Supply Chain Reduction and Operation Strategy under the Cap-and-Trade Model and Green Financial Background," Sustainability, MDPI, vol. 11(11), pages 1-17, May.
    11. Yi Yang & Xinwei Li & Huamin Li & Dongyin Li & Ruifu Yuan, 2020. "Deep Q-Network for Optimal Decision for Top-Coal Caving," Energies, MDPI, vol. 13(7), pages 1-14, April.
    12. Bartosz Ciupek & Karol Gołoś & Radosław Jankowski & Zbigniew Nadolny, 2021. "Effect of Hard Coal Combustion in Water Steam Environment on Chemical Composition of Exhaust Gases," Energies, MDPI, vol. 14(20), pages 1-24, October.
    13. Luo, Xi & Gao, Yaru & Liu, Xiaojun & Sun, Yongkai & Li, Na & Liu, Jianghua, 2023. "ACHRA: A novel model to study the propagation of clean heating acceptance among rural residents based on social networks," Applied Energy, Elsevier, vol. 333(C).
    14. Shittu, Ibrahim & Abdul Latiff, Abdul Rais Bin & Baharudin, Siti 'Aisyah, 2024. "Closing the clean cooking gap: Which policies and institutional qualities matter?," Energy Policy, Elsevier, vol. 185(C).
    15. Anna Stankowska, 2022. "Sustainability Development: Assessment of Selected Indicators of Sustainable Energy Development in Poland and in Selected EU Member States Prior to COVID-19 and Following the Third Wave of COVID-19," Energies, MDPI, vol. 15(6), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1910-:d:1068894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.