IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1874-d1067870.html
   My bibliography  Save this article

Self-Cleaning Mortar Façades with Addition of Anatase and Rutile Titanium Dioxide for Cool Façades

Author

Listed:
  • Eduardo Linhares Qualharini

    (Escola Politécnica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil)

  • Carina Mariane Stolz

    (Escola Politécnica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil)

  • Matheus Martini

    (Onex Engenharia, Novo Hamburgo 93546-010, Brazil)

  • Eduardo Polesello

    (Instituto de Ciências Criativas e Tecnológicas, Universidade FEEVALE, Novo Hamburgo 93300-000, Brazil)

  • Clara Rocha da Silva

    (Programa de Engenharia Ambiental, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil)

Abstract

The concern with the best energy performance of buildings is a current theme, and construction materials that bring improvements to the performance of buildings and their surroundings are in demand. Façades play a crucial role in regulating the temperature within buildings by permitting or obstructing the transfer of heat and also affect the ambient temperature. Light-colored façades help maintain environments with milder temperatures, but pollution, rain, and other degrading agents darken the colors of the façades, reducing their capacity of sunlight reflection. In this scenario, the present study analyzed the addition of different types of titanium dioxide, anatase and rutile, in cement tiles for building façades, combining the ease and speed of assembly with the self-cleaning effects of photocatalysis. The 1 cm thick tiles were produced with a 1:3 mortar ratio (cement:sand/dry aggregate) with a 0.5 water:cement ratio and the addition of 0.3% polypropylene fiber. Different admixture levels (0%, 5%, and 10%) of rutile and anatase titanium dioxide were used. The samples were tested for flexural strength, absorption, permeability, and photocatalysis effect by observing the color change and surface characteristics of the boards using a spectrophotometer. In addition, the hygroscopicity was analyzed through a water drop, using a goniometer. The results obtained showed that cement tiles with 5% titanium dioxide, which influences the color variation of the tiles, meet the regulatory requirements for use in outside environments. Thus, these materials have the potential to be used as cool façades since, by keeping their color lighter, the materials can reflect sunlight, therefore keeping lower temperatures inside the building, and, consequently, minimizing the heat island effect.

Suggested Citation

  • Eduardo Linhares Qualharini & Carina Mariane Stolz & Matheus Martini & Eduardo Polesello & Clara Rocha da Silva, 2023. "Self-Cleaning Mortar Façades with Addition of Anatase and Rutile Titanium Dioxide for Cool Façades," Energies, MDPI, vol. 16(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1874-:d:1067870
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1874/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silvia Croce & Elisa D’Agnolo & Mauro Caini & Rossana Paparella, 2021. "The Use of Cool Pavements for the Regeneration of Industrial Districts," Sustainability, MDPI, vol. 13(11), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martina Giorio & Rossana Paparella, 2023. "Climate Mitigation Strategies: The Use of Cool Pavements," Sustainability, MDPI, vol. 15(9), pages 1-26, May.
    2. Laura Moretti & Giuseppe Cantisani & Marco Carpiceci & Antonio D’Andrea & Giulia Del Serrone & Paola Di Mascio & Giuseppe Loprencipe, 2021. "Effect of Sampietrini Pavers on Urban Heat Islands," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    3. Laura Moretti & Giuseppe Cantisani & Marco Carpiceci & Antonio D’Andrea & Giulia Del Serrone & Paola Di Mascio & Paolo Peluso & Giuseppe Loprencipe, 2022. "Investigation of Parking Lot Pavements to Counteract Urban Heat Islands," Sustainability, MDPI, vol. 14(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1874-:d:1067870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.