IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1858-d1067264.html
   My bibliography  Save this article

Energy Efficiency Analysis of Pumping Systems Impacted by the Golden Mussel: A Case Study in the Brazilian Amazon

Author

Listed:
  • Tâmara Rita Costa de Souza

    (Graduate Program in Mechanical Engineering, Department of Mechanical Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil)

  • Jennifer Thayane Melo de Andrade

    (Postgraduate Program in Zoology, Department of Zoology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil)

  • Rodrigo Otávio Peréa Serrano

    (Postgraduate Program in Science, Innovation and Technology for the Amazon and Postgraduate Program in Geography, Federal University of Acre, Rio Branco 69920-900, Brazil)

  • Teofânia Heloísa Dutra Amorim Vidigal

    (Graduate Program in Mechanical Engineering, Department of Mechanical Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
    CPH (Centro de Pesquisas Hidráulicas), Laboratory of Malacology, Department of Zoology, Institute of Biological Science and LELF (Laboratory studys of the Limnoperna fortunei ), Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil)

  • Edna Maria de Faria Viana

    (Graduate Program in Mechanical Engineering, Department of Mechanical Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
    Department of Hydraulic Engineering and Water Resources, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil)

  • Adriano Silva Bastos

    (Thermo-Hydroelectro Laboratory, Institute of Mechanical Engineering, Federal University of Itajubá, Itajubá 35903-087, Brazil)

  • Carlos Barreira Martinez

    (Graduate Program in Mechanical Engineering, Department of Mechanical Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
    Thermo-Hydroelectro Laboratory, Institute of Mechanical Engineering, Federal University of Itajubá, Itajubá 35903-087, Brazil)

Abstract

Pumping systems, especially those used in the water supply sector and in industrial and hydroelectric facilities, are commonly infested by the golden mussel. This causes an increase in maintenance operations (e.g., system shutdowns for cleaning) that can generate an increased energy cost. The geographical expansion of the golden mussel in Latin America presents an economic risk, not only to the ecosystem in general, but also to the energy sector. The imminence of its spread in the Amazon region, one of the main river basins in South America, is cause for concern with regard to the problems that bioinvasion of this species can cause. Given the absence of studies on the loss of energy efficiency in pumping systems impacted by the golden mussel, this study proposes a methodology to estimate the increase in energy consumption and costs of pumping under such bioinfestation. For the standardization of the methodology and development of mathematical calculations (both novel and improved equations), data from the literature (the growth of the golden mussel as a function of infestation time) and an analysis of the dimensions (length and height) of a sample of mussels available in the laboratory were considered. These data were used to calculate the roughness generated by the mussel infestation in the pumping suction and discharger pipe, which was necessary to determine the loss of energy efficiency (load loss, power consumption, and cost of pumping) resulting from the increase in energy consumption for pumping. This methodology was applied to a pumping station representative of the Brazilian Amazon as a case study. The results show an average increase in economic indicators (consumption and cost of pumping) after the system undergoes bioinfestation. This total increase corresponded to 19% and 44% in the first and second years, respectively, achieving a stabilization of the increase in the cost of pumping at 46%, in the 30 months of operation. Our results demonstrate the pioneering nature of the proposal, since these are the first quantitative data on the energy efficiency of pumping systems associated with bioinfestation by the golden mussel. These results can also be used to estimate the increase in costs caused by golden mussel bioinfestation in the raw water pumping systems of other facilities.

Suggested Citation

  • Tâmara Rita Costa de Souza & Jennifer Thayane Melo de Andrade & Rodrigo Otávio Peréa Serrano & Teofânia Heloísa Dutra Amorim Vidigal & Edna Maria de Faria Viana & Adriano Silva Bastos & Carlos Barreir, 2023. "Energy Efficiency Analysis of Pumping Systems Impacted by the Golden Mussel: A Case Study in the Brazilian Amazon," Energies, MDPI, vol. 16(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1858-:d:1067264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1858/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1858/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tripathy, Prajukta & Jena, Pabitra Kumar & Mishra, Bikash Ranjan, 2024. "Systematic literature review and bibliometric analysis of energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    2. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    3. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    4. Shoaib Azizi & Gireesh Nair & Thomas Olofsson, 2020. "Adoption of Energy Efficiency Measures in Renovation of Single-Family Houses: A Comparative Approach," Energies, MDPI, vol. 13(22), pages 1-16, November.
    5. Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238007, International Telecommunications Society (ITS).
    6. Oliveira, Cíntia Carla Melgaço de & Brittes, José Luiz Pereira & Silveira Junior, Vivaldo, 2019. "Dynamic operating conditions strategy for water hybrid cooling under variable heating demand," Applied Energy, Elsevier, vol. 237(C), pages 635-645.
    7. Wenxuan Ma, 2022. "Exploring the Role of Educational Human Capital and Green Finance in Total-Factor Energy Efficiency in the Context of Sustainable Development," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    8. Román-Collado, Rocío & Colinet, María José, 2018. "Are labour productivity and residential living standards drivers of the energy consumption changes?," Energy Economics, Elsevier, vol. 74(C), pages 746-756.
    9. Anna Barwińska Małajowicz & Miroslava Knapková & Krzysztof Szczotka & Miriam Martinkovičová & Radosław Pyrek, 2022. "Energy Efficiency Policies in Poland and Slovakia in the Context of Individual Well-Being," Energies, MDPI, vol. 16(1), pages 1-29, December.
    10. Geng, Jiang-Bo & Ji, Qiang, 2014. "Multi-perspective analysis of China's energy supply security," Energy, Elsevier, vol. 64(C), pages 541-550.
    11. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    12. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    13. Velasco-Fernández, Raúl & Dunlop, Tessa & Giampietro, Mario, 2020. "Fallacies of energy efficiency indicators: Recognizing the complexity of the metabolic pattern of the economy," Energy Policy, Elsevier, vol. 137(C).
    14. Bernard, Jean-Thomas & Idoudi, Nadhem, 2003. "Demande d’énergie et changement de l’intensité énergétique du secteur manufacturier québécois de 1990 à 1998," L'Actualité Economique, Société Canadienne de Science Economique, vol. 79(4), pages 503-521, Décembre.
    15. Norman, Jonathan B., 2017. "Measuring improvements in industrial energy efficiency: A decomposition analysis applied to the UK," Energy, Elsevier, vol. 137(C), pages 1144-1151.
    16. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    17. Yi, Yuxin & Zhang, Liming & Du, Lei & Sun, Helin, 2024. "Cross-regional integration of renewable energy and corporate carbon emissions: Evidence from China's cross-regional surplus renewable energy spot trading pilot," Energy Economics, Elsevier, vol. 135(C).
    18. Aviel Verbruggen, 2011. "A Turbo Drive for the Global Reduction of Energy-Related CO 2 Emissions," Sustainability, MDPI, vol. 3(4), pages 1-17, April.
    19. Emmanouil Tziolas & Eleftherios Karapatzak & Ioannis Kalathas & Chris Lytridis & Spyridon Mamalis & Stefanos Koundouras & Theodore Pachidis & Vassilis G. Kaburlasos, 2023. "Comparative Assessment of Environmental/Energy Performance under Conventional Labor and Collaborative Robot Scenarios in Greek Viticulture," Sustainability, MDPI, vol. 15(3), pages 1-21, February.
    20. Honma, Satoshi & Hu, Jin-Li, 2009. "Total-factor energy productivity growth of regions in Japan," Energy Policy, Elsevier, vol. 37(10), pages 3941-3950, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1858-:d:1067264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.