IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1788-d1065155.html
   My bibliography  Save this article

Mathematical Modeling Study of Pressure Loss in the Flow Channels of Additive Manufacturing Aviation Hydraulic Valves

Author

Listed:
  • Dongfei Li

    (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Ning Dai

    (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Hongtao Wang

    (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Fujun Zhang

    (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

The application of additive manufacturing in the field of aviation hydraulics greatly improves the design freedom of hydraulic valve internal flow channels. Pressure loss in hydraulic valve internal flow channels is a primary factor that designers need to consider, and the rapid prediction of pressure loss is very helpful for flow channel design. At present, most studies only focus on how much the pressure loss in an additive manufacturing (AM) hydraulic channel is reduced compared with an original hydraulic channel, and a mathematical model of pressure loss in an AM curved channel is still lacking. In this paper, the pressure loss in a curved flow channel was firstly studied, and the main parameters affecting the pressure loss were determined using the dimensionless analysis method. Using computational fluid dynamics simulation, the relationships between the flow channel diameter, the flow channel length, the flow channel curvature radius, the fluid velocity and pressure loss were studied. According to the multiple regression analysis method, the mathematical model of pressure loss in aviation hydraulic channels was developed, and the model was solved based on the orthogonal experimental results. The pressure loss in the flow channel samples fabricated using selective laser melting was tested, and the results showed that the average error between the test results and the mathematical model calculation results was 7.72%. This model can be used to quickly predict the pressure loss in curved flow channels in the aviation hydraulic field.

Suggested Citation

  • Dongfei Li & Ning Dai & Hongtao Wang & Fujun Zhang, 2023. "Mathematical Modeling Study of Pressure Loss in the Flow Channels of Additive Manufacturing Aviation Hydraulic Valves," Energies, MDPI, vol. 16(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1788-:d:1065155
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1788/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1788/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun-hui Zhang & Gan Liu & Ruqi Ding & Kun Zhang & Min Pan & Shihao Liu, 2019. "3D Printing for Energy-Saving: Evidence from Hydraulic Manifolds Design," Energies, MDPI, vol. 12(13), pages 1-21, June.
    2. Barbara Zardin & Giovanni Cillo & Carlo Alberto Rinaldini & Enrico Mattarelli & Massimo Borghi, 2017. "Pressure Losses in Hydraulic Manifolds," Energies, MDPI, vol. 10(3), pages 1-21, March.
    3. Barbara Zardin & Giovanni Cillo & Massimo Borghi & Alessandro D’Adamo & Stefano Fontanesi, 2017. "Pressure Losses in Multiple-Elbow Paths and in V-Bends of Hydraulic Manifolds," Energies, MDPI, vol. 10(6), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryo Arai & Satoru Sakai & Akihiro Tatsuoka & Qin Zhang, 2021. "Analytical, Experimental, and Numerical Investigation of Energy in Hydraulic Cylinder Dynamics of Agriculture Scale Excavators," Energies, MDPI, vol. 14(19), pages 1-20, September.
    2. Andrea Vacca, 2018. "Energy Efficiency and Controllability of Fluid Power Systems," Energies, MDPI, vol. 11(5), pages 1-6, May.
    3. Ge Zhao & Wei Li & Jinsong Zhu, 2019. "A Numerical Investigation of the Influence of Geometric Parameters on the Performance of a Multi-Channel Confluent Water Supply," Energies, MDPI, vol. 12(22), pages 1-21, November.
    4. Jun-hui Zhang & Gan Liu & Ruqi Ding & Kun Zhang & Min Pan & Shihao Liu, 2019. "3D Printing for Energy-Saving: Evidence from Hydraulic Manifolds Design," Energies, MDPI, vol. 12(13), pages 1-21, June.
    5. Barbara Zardin & Giovanni Cillo & Massimo Borghi & Alessandro D’Adamo & Stefano Fontanesi, 2017. "Pressure Losses in Multiple-Elbow Paths and in V-Bends of Hydraulic Manifolds," Energies, MDPI, vol. 10(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1788-:d:1065155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.