IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1545-d1057469.html
   My bibliography  Save this article

Life Cycle Environmental Impacts Assessment of Post-Combustion Carbon Capture for Natural Gas Combined Cycle Power Plant in Iraq, Considering Grassroots and Retrofit Design

Author

Listed:
  • Rudha Khudhair Mohammed

    (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan)

  • Hooman Farzaneh

    (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
    Transdisciplinary Research and Education Center for Green Technologies, Kyushu University, Fukuoka 816-8580, Japan)

Abstract

In this work, the Life Cycle Assessment (LCA) methodology is used to examine the implications of CO 2 capture from a natural gas combined cycle power plant with post-combustion carbon capture (NGCC-CCS) in Iraq, taking into account two different design scenarios. In the first scenario (retrofit), the carbon capture unit is considered as an end pipe technology that can be linked to an existing power plant. The second scenario considers a grassroots design, in which a new power plant equipped with a carbon capture unit needs to be constructed. The LCA is carried out based on different impact assessment (LCIA) methodologies of ReCipe 2016 Midpoint (H), TRACI 2.1, and IMPACT 2002+ to investigate whether the chosen LCIA method influences the LCA scenario analysis for decision support in process development. The results of three impact categories applied to both scenarios reveal a 28% reduction in Global Warming Potentials (GWPs) and a 14% and 17% increase in the Particulate Matter Formation Potential (PMFP) and Acidification (AP) potential in the grassroots scenario, respectively. Finally, an uncertainty analysis is performed to more accurately reflect the influence of uncertain factors on the statistical significance of the environmental impact evaluation in this research, indicating that these uncertainties may significantly affect the ultimate decision.

Suggested Citation

  • Rudha Khudhair Mohammed & Hooman Farzaneh, 2023. "Life Cycle Environmental Impacts Assessment of Post-Combustion Carbon Capture for Natural Gas Combined Cycle Power Plant in Iraq, Considering Grassroots and Retrofit Design," Energies, MDPI, vol. 16(3), pages 1-35, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1545-:d:1057469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1545/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1545/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlo Strazza & Adriana Del Borghi & Michela Gallo, 2013. "Development of Specific Rules for the Application of Life Cycle Assessment to Carbon Capture and Storage," Energies, MDPI, vol. 6(3), pages 1-16, March.
    2. deLlano-Paz, Fernando & Martínez Fernandez, Paulino & Soares, Isabel, 2016. "Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues," Energy, Elsevier, vol. 115(P2), pages 1347-1360.
    3. Gibbins, Jon & Chalmers, Hannah, 2008. "Carbon capture and storage," Energy Policy, Elsevier, vol. 36(12), pages 4317-4322, December.
    4. Alessia Gargiulo & Maria Leonor Carvalho & Pierpaolo Girardi, 2020. "Life Cycle Assessment of Italian Electricity Scenarios to 2030," Energies, MDPI, vol. 13(15), pages 1-16, July.
    5. Odeh, Naser A. & Cockerill, Timothy T., 2008. "Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage," Energy Policy, Elsevier, vol. 36(1), pages 367-380, January.
    6. Hosseini, Seyed Mohsen & Kanagaraj, N. & Sadeghi, Shahrbanoo & Yousefi, Hossein, 2022. "Midpoint and endpoint impacts of electricity generation by renewable and nonrenewable technologies: A case study of Alberta, Canada," Renewable Energy, Elsevier, vol. 197(C), pages 22-39.
    7. Zahir Barahmand & Marianne S. Eikeland, 2022. "Life Cycle Assessment under Uncertainty: A Scoping Review," World, MDPI, vol. 3(3), pages 1-26, September.
    8. Saman Hasan & Abubakar Jibrin Abbas & Ghasem Ghavami Nasr, 2020. "Improving the Carbon Capture Efficiency for Gas Power Plants through Amine-Based Absorbents," Sustainability, MDPI, vol. 13(1), pages 1-27, December.
    9. Ravikumar, Dwarakanath & Keoleian, Gregory & Miller, Shelie, 2020. "The environmental opportunity cost of using renewable energy for carbon capture and utilization for methanol production," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucia F. Pérez Garcés & Karol Sztekler & Leonardo Azevedo & Piotr Boruta & Tomasz Bujok & Ewelina Radomska & Agata Mlonka-Mędrala & Łukasz Mika & Tomasz Chmielniak, 2024. "Assessment of the Use of Carbon Capture and Storage Technology to Reduce CO 2 Emissions from a Natural Gas Combined Cycle Power Plant in a Polish Context," Energies, MDPI, vol. 17(13), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shin, Jungwoo & Lee, Chul-Yong & Kim, Hongbum, 2016. "Technology and demand forecasting for carbon capture and storage technology in South Korea," Energy Policy, Elsevier, vol. 98(C), pages 1-11.
    2. Graeme J. Collie & Mahmoud Nazeri & Amir Jahanbakhsh & Chih‐Wei Lin & M. Mercedes Maroto‐Valer, 2017. "Review of flowmeters for carbon dioxide transport in CCS applications," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 10-28, February.
    3. Bobo Zheng & Jiuping Xu, 2014. "Carbon Capture and Storage Development Trends from a Techno-Paradigm Perspective," Energies, MDPI, vol. 7(8), pages 1-30, August.
    4. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    5. Shalini Verma & Akshoy Ranjan Paul & Nawshad Haque, 2022. "Selected Environmental Impact Indicators Assessment of Wind Energy in India Using a Life Cycle Assessment," Energies, MDPI, vol. 15(11), pages 1-16, May.
    6. Setiawan, Andri D. & Cuppen, Eefje, 2013. "Stakeholder perspectives on carbon capture and storage in Indonesia," Energy Policy, Elsevier, vol. 61(C), pages 1188-1199.
    7. Xiaolong, Chen & Yiqiang, Li & Xiang, Tang & Huan, Qi & Xuebing, Sun & Jianghao, Luo, 2021. "Effect of gravity segregation on CO2 flooding under various pressure conditions: Application to CO2 sequestration and oil production," Energy, Elsevier, vol. 226(C).
    8. Kristína Zakuciová & Jiří Štefanica & Ana Carvalho & Vladimír Kočí, 2020. "Environmental Assessment of a Coal Power Plant with Carbon Dioxide Capture System Based on the Activated Carbon Adsorption Process: A Case Study of the Czech Republic," Energies, MDPI, vol. 13(9), pages 1-18, May.
    9. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    10. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    11. Mukhtarov, Shahriyar & Yüksel, Serhat & Dinçer, Hasan, 2022. "The impact of financial development on renewable energy consumption: Evidence from Turkey," Renewable Energy, Elsevier, vol. 187(C), pages 169-176.
    12. Xie, Heping & Liu, Tao & Wang, Yufei & Wu, Yifan & Wang, Fuhuan & Tang, Liang & Jiang, Wen & Liang, Bin, 2017. "Enhancement of electricity generation in CO2 mineralization cell by using sodium sulfate as the reaction medium," Applied Energy, Elsevier, vol. 195(C), pages 991-999.
    13. Kleijn, René & van der Voet, Ester & Kramer, Gert Jan & van Oers, Lauran & van der Giesen, Coen, 2011. "Metal requirements of low-carbon power generation," Energy, Elsevier, vol. 36(9), pages 5640-5648.
    14. Costantini, Michele & Provolo, Giorgio & Bacenetti, Jacopo, 2024. "The effects of incorporating renewable energy into the environmental footprint of beef production," Energy, Elsevier, vol. 289(C).
    15. Christian Leßmann & Arne Steinkraus, 2016. "Kurz zum Klima: »Carbon Capture and Storage« – was kostet die Emissionsvermeidung?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 69(05), pages 51-54, March.
    16. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    17. Aydin, Gokhan & Karakurt, Izzet & Aydiner, Kerim, 2010. "Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety," Energy Policy, Elsevier, vol. 38(9), pages 5072-5080, September.
    18. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    19. Vonsée, Bram & Crijns-Graus, Wina & Liu, Wen, 2019. "Energy technology dependence - A value chain analysis of geothermal power in the EU," Energy, Elsevier, vol. 178(C), pages 419-435.
    20. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1545-:d:1057469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.