IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1518-d1056937.html
   My bibliography  Save this article

MIMO-SAR Interferometric Measurements for Wind Turbine Tower Deformation Monitoring

Author

Listed:
  • Andreas Baumann-Ouyang

    (Institute of Geodesy and Photogrammetry, ETH Zürich, 8093 Zürich, Switzerland
    RUAG AG, 8602 Wangen, Switzerland)

  • Jemil Avers Butt

    (Institute of Geodesy and Photogrammetry, ETH Zürich, 8093 Zürich, Switzerland
    Atlas Optimization GmbH, 8049 Zürich, Switzerland)

  • Matej Varga

    (Institute of Geodesy and Photogrammetry, ETH Zürich, 8093 Zürich, Switzerland)

  • Andreas Wieser

    (Institute of Geodesy and Photogrammetry, ETH Zürich, 8093 Zürich, Switzerland)

Abstract

Deformations affect the structural integrity of wind turbine towers. The health of such structures is thus assessed by monitoring. The majority of sensors used for this purpose are costly and require in situ installations. We investigated whether Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO-SAR) sensors can be used to monitor wind turbine towers. We used an automotive-grade, low-cost, off-the-shelf MIMO-SAR sensor operating in the W-band with an acquisition frequency of 100 Hz to derive Line-Of-Sight (LOS) deformation measurements in ranges up to about 175 m . Time series of displacement measurements for areas at different heights of the tower were analyzed and compared to reference measurements acquired by processing video camera recordings and total station measurements. The results showed movements in the range of up to 1 m at the top of the tower. We were able to detect the deformations also with the W-band MIMO-SAR sensor; for areas with sufficient radar backscattering, the results suggest a sub-mm noise level of the radar measurements and agreement with the reference measurements at the mm- to sub-mm level. We further applied Fourier transformation to detect the dominant vibration frequencies and identified values ranging from 0.17 to 24 Hz . The outcomes confirmed the potential of MIMO-SAR sensors for highly precise, cost-efficient, and time-efficient structural monitoring of wind turbine towers. The sensors are likely also applicable for monitoring other high-rise structures such as skyscrapers or chimneys.

Suggested Citation

  • Andreas Baumann-Ouyang & Jemil Avers Butt & Matej Varga & Andreas Wieser, 2023. "MIMO-SAR Interferometric Measurements for Wind Turbine Tower Deformation Monitoring," Energies, MDPI, vol. 16(3), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1518-:d:1056937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wymore, Mathew L. & Van Dam, Jeremy E. & Ceylan, Halil & Qiao, Daji, 2015. "A survey of health monitoring systems for wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 976-990.
    2. Md Liton Hossain & Ahmed Abu-Siada & S. M. Muyeen, 2018. "Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review," Energies, MDPI, vol. 11(5), pages 1-14, May.
    3. Paula Helming & Axel von Freyberg & Michael Sorg & Andreas Fischer, 2021. "Wind Turbine Tower Deformation Measurement Using Terrestrial Laser Scanning on a 3.4 MW Wind Turbine," Energies, MDPI, vol. 14(11), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tadeusz Głowacki, 2022. "Monitoring the Geometry of Tall Objects in Energy Industry," Energies, MDPI, vol. 15(7), pages 1-15, March.
    2. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    3. Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
    4. Rubert, T. & Zorzi, G. & Fusiek, G. & Niewczas, P. & McMillan, D. & McAlorum, J. & Perry, M., 2019. "Wind turbine lifetime extension decision-making based on structural health monitoring," Renewable Energy, Elsevier, vol. 143(C), pages 611-621.
    5. Qian, XiaoYi & Sun, TianHe & Zhang, YuXian & Wang, BaoShi & Awad Gendeel, Mohammed Altayeb, 2023. "Wind turbine fault detection based on spatial-temporal feature and neighbor operation state," Renewable Energy, Elsevier, vol. 219(P1).
    6. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    7. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.
    8. Wei-Hua Hu & De-Hui Tang & Ming Wang & Jun-Le Liu & Zuo-Hua Li & Wei Lu & Jun Teng & Samir Said & Rolf. G. Rohrmann, 2020. "Resonance Monitoring of a Horizontal Wind Turbine by Strain-Based Automated Operational Modal Analysis," Energies, MDPI, vol. 13(3), pages 1-21, January.
    9. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    10. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    11. Wang, Bingkai & Sun, Wenlei & Wang, Hongwei & Xu, Tiantian & Zou, Yi, 2024. "Research on rapid calculation method of wind turbine blade strain for digital twin," Renewable Energy, Elsevier, vol. 221(C).
    12. Phong B. Dao, 2021. "A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    13. Dong, Weiwei & Zhao, Guohua & Yüksel, Serhat & Dinçer, Hasan & Ubay, Gözde Gülseven, 2022. "A novel hybrid decision making approach for the strategic selection of wind energy projects," Renewable Energy, Elsevier, vol. 185(C), pages 321-337.
    14. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    15. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    16. Urmeneta, Jon & Izquierdo, Juan & Leturiondo, Urko, 2023. "A methodology for performance assessment at system level—Identification of operating regimes and anomaly detection in wind turbines," Renewable Energy, Elsevier, vol. 205(C), pages 281-292.
    17. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    18. Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.
    19. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    20. Mario Vieira & Brian Snyder & Elsa Henriques & Craig White & Luis Reis, 2023. "Economic Viability of Implementing Structural Health Monitoring Systems on the Support Structures of Bottom-Fixed Offshore Wind," Energies, MDPI, vol. 16(13), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1518-:d:1056937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.