IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v205y2024ics1364032124005574.html
   My bibliography  Save this article

Critical review of technologies, data, and scenario elements in net-zero pathway modeling for the chemical industry

Author

Listed:
  • Jin, Enze
  • Jabarivelisdeh, Banafsheh
  • Schoeneberger, Carrie
  • Chamanara, Sanaz
  • Dunn, Jennifer B.
  • Christopher, Phillip
  • Masanet, Eric

Abstract

Scientists have reached a consensus that limiting global warming to 1.5 °C necessitates achieving net-zero greenhouse gas emissions across all economic sectors. Numerous research institutes have prepared decarbonization strategies for the global and regional chemical industries, utilizing modeling and systems analysis to identify decarbonization pathways with different combinations of low-carbon technologies. However, technology choices and scenario designs vary widely across studies, which precludes generalizability and complicates the use of data and results by the broader decarbonization scenario modeling community. Given the varied scopes and objectives inherent in different system models, there is no standardized set of technology data for use in decarbonization pathways analysis. A systematic literature review of 27 relevant studies was performed, which found opportunities for improving technology representation, technology readiness, scenario consistency, demand factors, and policy interventions, among other quantitative elements. Only 7 out of 27 reviewed studies investigated all types of mitigation technologies, and only 3 studies included all data elements aligning with the proposed rubric in this paper. Considering these opportunities, this review proposes a comprehensive dataset structure and consistent scenario definitions that can enable more comprehensive, comparable, robust, and replicable net-zero decarbonization scenarios by modelers of the chemicals industry moving forward.

Suggested Citation

  • Jin, Enze & Jabarivelisdeh, Banafsheh & Schoeneberger, Carrie & Chamanara, Sanaz & Dunn, Jennifer B. & Christopher, Phillip & Masanet, Eric, 2024. "Critical review of technologies, data, and scenario elements in net-zero pathway modeling for the chemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:rensus:v:205:y:2024:i:c:s1364032124005574
    DOI: 10.1016/j.rser.2024.114831
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124005574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lechtenböhmer, Stefan & Nilsson, Lars J. & Åhman, Max & Schneider, Clemens, 2016. "Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand," Energy, Elsevier, vol. 115(P3), pages 1623-1631.
    2. Stefan Nabernegg & Birgit Bednar-Friedl & Fabian Wagner & Thomas Schinko & Janusz Cofala & Yadira Mori Clement, 2017. "The Deployment of Low Carbon Technologies in Energy Intensive Industries: A Macroeconomic Analysis for Europe, China and India," Energies, MDPI, vol. 10(3), pages 1, March.
    3. Hernandez, Ana Gonzalez & Cooper-Searle, Simone & Skelton, Alexandra C.H. & Cullen, Jonathan M., 2018. "Leveraging material efficiency as an energy and climate instrument for heavy industries in the EU," Energy Policy, Elsevier, vol. 120(C), pages 533-549.
    4. Jiajia Zheng & Sangwon Suh, 2019. "Strategies to reduce the global carbon footprint of plastics," Nature Climate Change, Nature, vol. 9(5), pages 374-378, May.
    5. Saygin, D. & Patel, M.K. & Worrell, E. & Tam, C. & Gielen, D.J., 2011. "Potential of best practice technology to improve energy efficiency in the global chemical and petrochemical sector," Energy, Elsevier, vol. 36(9), pages 5779-5790.
    6. Deger Saygin & Dolf Gielen, 2021. "Zero-Emission Pathway for the Global Chemical and Petrochemical Sector," Energies, MDPI, vol. 14(13), pages 1-28, June.
    7. Kai Liu & Xingping Wang & Yiran Yan, 2022. "Network Analysis of Industrial Symbiosis in Chemical Industrial Parks: A Case Study of Nanjing Jiangbei New Materials High-Tech Park," Sustainability, MDPI, vol. 14(3), pages 1-23, January.
    8. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    9. Griffin, Paul W. & Hammond, Geoffrey P. & Norman, Jonathan B., 2018. "Industrial energy use and carbon emissions reduction in the chemicals sector: A UK perspective," Applied Energy, Elsevier, vol. 227(C), pages 587-602.
    10. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    11. Edelenbosch, O.Y. & Kermeli, K. & Crijns-Graus, W. & Worrell, E. & Bibas, R. & Fais, B. & Fujimori, S. & Kyle, P. & Sano, F. & van Vuuren, D.P., 2017. "Comparing projections of industrial energy demand and greenhouse gas emissions in long-term energy models," Energy, Elsevier, vol. 122(C), pages 701-710.
    12. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    13. Rehfeldt, Matthias & Fleiter, Tobias & Herbst, Andrea & Eidelloth, Stefan, 2020. "Fuel switching as an option for medium-term emission reduction - A model-based analysis of reactions to price signals and regulatory action in German industry," Energy Policy, Elsevier, vol. 147(C).
    14. Jiajia Zheng & Sangwon Suh, 2019. "Publisher Correction: Strategies to reduce the global carbon footprint of plastics," Nature Climate Change, Nature, vol. 9(7), pages 567-567, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deger Saygin & Dolf Gielen, 2021. "Zero-Emission Pathway for the Global Chemical and Petrochemical Sector," Energies, MDPI, vol. 14(13), pages 1-28, June.
    2. Patria, Raffel Dharma & Rehman, Shazia & Yuen, Chun-Bong & Lee, Duu-Jong & Vuppaladadiyam, Arun K. & Leu, Shao-Yuan, 2024. "Energy-environment-economic (3E) hub for sustainable plastic management – Upgraded recycling, chemical valorization, and bioplastics," Applied Energy, Elsevier, vol. 357(C).
    3. Konrad, Kai A. & Lommerud, Kjell Erik, 2021. "Effective climate policy needs non-combustion uses for hydrocarbons," Energy Policy, Elsevier, vol. 157(C).
    4. N. O. Kapustin & D. A. Grushevenko, 2023. "Assessment of Long-Term Prospects for Demand in the Plastics Market in the Face of Industry Transformation," Studies on Russian Economic Development, Springer, vol. 34(2), pages 243-253, April.
    5. Christopher G. F. Bataille, 2020. "Physical and policy pathways to net‐zero emissions industry," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    6. Gilbert Moyen Massa & Vasiliki-Maria Archodoulaki, 2024. "An Imported Environmental Crisis: Plastic Mismanagement in Africa," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    7. David Duindam, 2022. "Transitioning to Sustainable Healthcare: Decarbonising Healthcare Clinics, a Literature Review," Challenges, MDPI, vol. 13(2), pages 1-20, December.
    8. Mohammad Alaghemandi, 2024. "Sustainable Solutions Through Innovative Plastic Waste Recycling Technologies," Sustainability, MDPI, vol. 16(23), pages 1-37, November.
    9. Chrysanthos Maraveas, 2020. "Environmental Sustainability of Plastic in Agriculture," Agriculture, MDPI, vol. 10(8), pages 1-15, July.
    10. R. Basuhi & Karan Bhuwalka & Richard Roth & Elsa A. Olivetti, 2024. "Evaluating strategies to increase PET bottle recycling in the United States," Journal of Industrial Ecology, Yale University, vol. 28(4), pages 916-927, August.
    11. Klemeš, Jiří Jaromír & Fan, Yee Van & Tan, Raymond R. & Jiang, Peng, 2020. "Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    12. Erfan Oliaei & Peter Olsén & Tom Lindström & Lars A. Berglund, 2022. "Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Priyadarshi Roy Chowdhury & Himani Medhi & Krishna G. Bhattacharyya & Chaudhery Mustansar Hussain, 2023. "Impacts of emerging and novel plastic waste variants on marine and coastal ecosystems: Challenges and implications on the circular economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(5), September.
    14. World Bank, 2023. "Tackling Plastics Pollution," World Bank Publications - Reports 40458, The World Bank Group.
    15. Livia Cabernard & Stephan Pfister & Christopher Oberschelp & Stefanie Hellweg, 2022. "Growing environmental footprint of plastics driven by coal combustion," Nature Sustainability, Nature, vol. 5(2), pages 139-148, February.
    16. Halayit Abrha & Jonnathan Cabrera & Yexin Dai & Muhammad Irfan & Abrham Toma & Shipu Jiao & Xianhua Liu, 2022. "Bio-Based Plastics Production, Impact and End of Life: A Literature Review and Content Analysis," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    17. Layritz, Lucia S. & Dolganova, Iulia & Finkbeiner, Matthias & Luderer, Gunnar & Penteado, Alberto T. & Ueckerdt, Falko & Repke, Jens-Uwe, 2021. "The potential of direct steam cracker electrification and carbon capture & utilization via oxidative coupling of methane as decarbonization strategies for ethylene production," Applied Energy, Elsevier, vol. 296(C).
    18. Quan-Hoang Vuong & Manh-Tung Ho & Hong-Kong To Nguyen & Minh-Hoang Nguyen, 2019. "The trilemma of sustainable industrial growth: evidence from a piloting OECD’s Green city," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-14, December.
    19. Bauer, Fredric & Fontenit, Germain, 2021. "Plastic dinosaurs – Digging deep into the accelerating carbon lock-in of plastics," Energy Policy, Elsevier, vol. 156(C).
    20. Daniel Holzer & Claudia Mair-Bauernfeind & Michael Kriechbaum & Romana Rauter & Tobias Stern, 2023. "Different but the Same? Comparing Drivers and Barriers for Circular Economy Innovation Systems in Wood- and Plastic-Based Industries," Circular Economy and Sustainability, Springer, vol. 3(2), pages 983-1011, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:205:y:2024:i:c:s1364032124005574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.