IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v205y2024ics1364032124005574.html
   My bibliography  Save this article

Critical review of technologies, data, and scenario elements in net-zero pathway modeling for the chemical industry

Author

Listed:
  • Jin, Enze
  • Jabarivelisdeh, Banafsheh
  • Schoeneberger, Carrie
  • Chamanara, Sanaz
  • Dunn, Jennifer B.
  • Christopher, Phillip
  • Masanet, Eric

Abstract

Scientists have reached a consensus that limiting global warming to 1.5 °C necessitates achieving net-zero greenhouse gas emissions across all economic sectors. Numerous research institutes have prepared decarbonization strategies for the global and regional chemical industries, utilizing modeling and systems analysis to identify decarbonization pathways with different combinations of low-carbon technologies. However, technology choices and scenario designs vary widely across studies, which precludes generalizability and complicates the use of data and results by the broader decarbonization scenario modeling community. Given the varied scopes and objectives inherent in different system models, there is no standardized set of technology data for use in decarbonization pathways analysis. A systematic literature review of 27 relevant studies was performed, which found opportunities for improving technology representation, technology readiness, scenario consistency, demand factors, and policy interventions, among other quantitative elements. Only 7 out of 27 reviewed studies investigated all types of mitigation technologies, and only 3 studies included all data elements aligning with the proposed rubric in this paper. Considering these opportunities, this review proposes a comprehensive dataset structure and consistent scenario definitions that can enable more comprehensive, comparable, robust, and replicable net-zero decarbonization scenarios by modelers of the chemicals industry moving forward.

Suggested Citation

  • Jin, Enze & Jabarivelisdeh, Banafsheh & Schoeneberger, Carrie & Chamanara, Sanaz & Dunn, Jennifer B. & Christopher, Phillip & Masanet, Eric, 2024. "Critical review of technologies, data, and scenario elements in net-zero pathway modeling for the chemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:rensus:v:205:y:2024:i:c:s1364032124005574
    DOI: 10.1016/j.rser.2024.114831
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124005574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:205:y:2024:i:c:s1364032124005574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.