IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1137-d1041814.html
   My bibliography  Save this article

Towards GreenPLM—Key Sustainable Indicators Selection and Assessment Method Development

Author

Listed:
  • Joanna Helman

    (Department of Laser Technologies, Automation and Production Management, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Maria Rosienkiewicz

    (Department of Laser Technologies, Automation and Production Management, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Mariusz Cholewa

    (Department of Laser Technologies, Automation and Production Management, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Mateusz Molasy

    (Department of Laser Technologies, Automation and Production Management, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Sylwester Oleszek

    (Transition Technologies PSC S.A., 90-361 Łódź, Poland)

Abstract

Regulations, depletion of natural resources and changing customer demands are putting pressure on manufacturing companies to consider environmental issues in the development of new products. Companies are using PLM systems to manage the product lifecycle, but the current generation of these systems is not adequately adapted to product sustainability issues. The research results presented in this article are intended to support two target groups: academia and industry. The main scientific objective is to provide a systematic method for selecting and evaluating sustainability indicators related to the various phases of automotive lifecycle management. The main application goal is to support the industry in its pursuit of greener development by identifying which sustainability indicators are relevant to each phase of the product lifecycle. As a result, the key green indicators related to the automotive industry in line with the GreenPLM concept are identified together with their assignment to the elements of the car’s beginning-of-life stages, as well as their potential data sources. This paper introduces the concept of GreenPLM and its future application possibilities.

Suggested Citation

  • Joanna Helman & Maria Rosienkiewicz & Mariusz Cholewa & Mateusz Molasy & Sylwester Oleszek, 2023. "Towards GreenPLM—Key Sustainable Indicators Selection and Assessment Method Development," Energies, MDPI, vol. 16(3), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1137-:d:1041814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1137/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1137/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Annekatrin Lehmann & Vanessa Bach & Matthias Finkbeiner, 2016. "EU Product Environmental Footprint—Mid-Term Review of the Pilot Phase," Sustainability, MDPI, vol. 8(1), pages 1-13, January.
    2. Dominik Jasiński & James Meredith & Kerry Kirwan, 2021. "Sustainable development model for measuring and managing sustainability in the automotive sector," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1123-1137, November.
    3. Haiqing Zhang & Yacine Ouzrout & Abdelaziz Bouras & Matteo Mario Savino, 2014. "Sustainability consideration within product lifecycle management through maturity models analysis," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 19(2), pages 151-171.
    4. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    5. Caroline Rodrigues Vaz & Tania Regina Shoeninger Rauen & Álvaro Guillermo Rojas Lezana, 2017. "Sustainability and Innovation in the Automotive Sector: A Structured Content Analysis," Sustainability, MDPI, vol. 9(6), pages 1-23, May.
    6. Miguel F. Salvado & Susana G. Azevedo & João C. O. Matias & Luís M. Ferreira, 2015. "Proposal of a Sustainability Index for the Automotive Industry," Sustainability, MDPI, vol. 7(2), pages 1-32, February.
    7. Piotr FOLĘGA & Dorota BURCHART-KOROL, 2017. "Environmental Assessment Of Road Transport In A Passenger Car Using The Life Cycle Approach," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 12(2), pages 147-153, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Maryam Masoumi & Nima Kazemi & Salwa Hanim Abdul-Rashid, 2019. "Sustainable Supply Chain Management in the Automotive Industry: A Process-Oriented Review," Sustainability, MDPI, vol. 11(14), pages 1-30, July.
    2. Idiano D'Adamo & Massimo Gastaldi & Ilhan Ozturk, 2023. "The sustainable development of mobility in the green transition: Renewable energy, local industrial chain, and battery recycling," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 840-852, April.
    3. Andrei, Mariana & Rohdin, Patrik & Thollander, Patrik & Wallin, Johanna & Tångring, Magnus, 2024. "Exploring a decarbonization framework for a Swedish automotive paint shop," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    4. Victoria Vicario-Modroño & Rosa Gallardo-Cobos & Pedro Sánchez-Zamora, 2023. "Sustainability evaluation of olive oil mills in Andalusia (Spain): a study based on composite indicators," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6363-6392, July.
    5. Albiona Pestisha & Zoltán Gabnai & Aidana Chalgynbayeva & Péter Lengyel & Attila Bai, 2023. "On-Farm Renewable Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    6. Sharma, Varun & Vijayaraghavan, T.A.S. & Raghu Ram, Tata L., 2023. "Resolving operational paradox of sustainable supply chain: A decision framework approach," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    7. José Carlos Romero & Pedro Linares, 2021. "Multiple Criteria Decision-Making as an Operational Conceptualization of Energy Sustainability," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    8. Ali Mostafaeipour & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahabaddin Hosseini Dehshiri & Mehdi Jahangiri & Kuaanan Techato, 2020. "A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    9. Zsuzsanna Katalin Szabo & Zsombor Szádoczki & Sándor Bozóki & Gabriela C. Stănciulescu & Dalma Szabo, 2021. "An Analytic Hierarchy Process Approach for Prioritisation of Strategic Objectives of Sustainable Development," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    10. Harshad Sonar & Ayon Mukherjee & Angappa Gunasekaran & Rajesh Kr Singh, 2022. "Sustainable supply chain management of automotive sector in context to the circular economy: A strategic framework," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3635-3648, November.
    11. Magdalena Krysiak & Aldona Kluczek, 2021. "A Multifaceted Challenge to Enhance Multicriteria Decision Support for Energy Policy," Energies, MDPI, vol. 14(14), pages 1-20, July.
    12. Fuli Zhou & Xu Wang & Yun Lin & Yandong He & Lin Zhou, 2016. "Strategic Part Prioritization for Quality Improvement Practice Using a Hybrid MCDM Framework: A Case Application in an Auto Factory," Sustainability, MDPI, vol. 8(6), pages 1-17, June.
    13. Briseño, Hugo & Ramirez-Nafarrate, Adrian & Araz, Ozgur M., 2021. "A multivariate analysis of hybrid and electric vehicles sales in Mexico," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    14. Brucke, Karoline & Schlüters, Sunke & Hanke, Benedikt & Agert, Carsten & von Maydell, Karsten, 2025. "System friendliness of distributed resources in sustainable energy systems," Applied Energy, Elsevier, vol. 377(PC).
    15. Michaela Makešová & Michaela Valentová, 2021. "The Concept of Multiple Impacts of Renewable Energy Sources: A Critical Review," Energies, MDPI, vol. 14(11), pages 1-21, May.
    16. María Carmen Carnero, 2015. "Assessment of Environmental Sustainability in Health Care Organizations," Sustainability, MDPI, vol. 7(7), pages 1-22, June.
    17. Willem Haanstra & Willem-Jan Rensink & Alberto Martinetti & Jan Braaksma & Leo van Dongen, 2020. "Design for Sustainable Public Transportation: LCA-Based Tooling for Guiding Early Design Priorities," Sustainability, MDPI, vol. 12(23), pages 1-17, November.
    18. Chiuhsiang Joe Lin & Tariku Tamiru Belis & Tsai Chi Kuo, 2019. "Ergonomics-Based Factors or Criteria for the Evaluation of Sustainable Product Manufacturing," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    19. Koh, S.C.L. & Smith, L. & Miah, J. & Astudillo, D. & Eufrasio, R.M. & Gladwin, D. & Brown, S. & Stone, D., 2021. "Higher 2nd life Lithium Titanate battery content in hybrid energy storage systems lowers environmental-economic impact and balances eco-efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Myung Kyo Kim & Chwen Sheu & Jiho Yoon, 2018. "Environmental Sustainability as a Source of Product Innovation: The Role of Governance Mechanisms in Manufacturing Firms," Sustainability, MDPI, vol. 10(7), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1137-:d:1041814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.