IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1090-d1040557.html
   My bibliography  Save this article

Curve Optimization for the Anidolic Daylight System Counterbalancing Energy Saving, Indoor Visual and Thermal Comfort for Sydney Dwellings

Author

Listed:
  • Ehsan Sorooshnia

    (Centre for Infrastructure Engineering, School of Engineering, Design and Built Environment, Kingswood, NSW 2747, Australia)

  • Payam Rahnamayiezekavat

    (Parramatta South Campus, Western Sydney University, Sydney, NSW 2116, Australia)

  • Maria Rashidi

    (Centre for Infrastructure Engineering, School of Engineering, Design and Built Environment, Kingswood, NSW 2747, Australia)

  • Mahsan Sadeghi

    (Energy Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton South, VIC 3169, Australia
    Centre for Air Pollution, Energy, and Health Research, Sydney, NSW 2037, Australia)

  • Bijan Samali

    (Centre for Infrastructure Engineering, School of Engineering, Design and Built Environment, Kingswood, NSW 2747, Australia)

Abstract

Daylight penetration significantly affects building thermal-daylighting performance, and serve a dual function of permitting sunlight and creating a pleasant indoor environment. More recent attention has focused on the provision of daylight in the rear part of indoor spaces in designing sustainable buildings. Passive Anidolic Daylighting Systems (ADS) are effective tools for daylight collection and redistribution of sunlight towards the back of the room. As affordable and low-maintenance systems, they can provide indoor daylight and alleviate the problem of daylight over-provision near the window and under-provision in the rear part of the room. Much of the current literature on the ADS pays particular attention to visual comfort and rarely to thermal comfort. Therefore, a reasonable compromise between visual and thermal comfort as well as energy consumption becomes the main issue for energy-optimized aperture design in the tropics and subtropics, in cities such as Sydney, Australia. The objective of the current study was to devise a system that could act as a double-performance of shade and reflective tool. The central aim of this paper is to find the optimum curve that can optimize daylight admission without an expensive active tracking system. A combination of in-detail simulation (considering every possible sky condition throughout a year) and multi-objective optimization (considering indoor visual and thermal comfort as well as the view to the outside), which was validated by field measurement, resulted in the optimum ADS for the local dwellings in Sydney, Australia. An approximate 62% increase in Daylight Factor, 5% decrease in yearly average heating load, 17% savings in annual artificial lighting energy, and 30% decrease in Predicted Percentage Dissatisfied (PPD) were achieved through optimizing the ADS curve.

Suggested Citation

  • Ehsan Sorooshnia & Payam Rahnamayiezekavat & Maria Rashidi & Mahsan Sadeghi & Bijan Samali, 2023. "Curve Optimization for the Anidolic Daylight System Counterbalancing Energy Saving, Indoor Visual and Thermal Comfort for Sydney Dwellings," Energies, MDPI, vol. 16(3), pages 1-30, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1090-:d:1040557
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1090/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1090/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vincenzo Costanzo & Gianpiero Evola & Luigi Marletta & Fabiana Pistone Nascone, 2018. "Application of Climate Based Daylight Modelling to the Refurbishment of a School Building in Sicily," Sustainability, MDPI, vol. 10(8), pages 1-19, July.
    2. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
    3. Mimi Ravn & Gabriela Mach & Ellen Kathrine Hansen & Georgios Triantafyllidis, 2022. "Simulating Physiological Potentials of Daylight Variables in Lighting Design," Sustainability, MDPI, vol. 14(2), pages 1-12, January.
    4. Domenico Campisi & Simone Gitto & Donato Morea, 2018. "An Evaluation of Energy and Economic Efficiency in Residential Buildings Sector: A Multi-criteria Analisys on an Italian Case Study," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 185-196.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Alzarooni & Abdul Ghani Olabi & Montaser Mahmoud & Safaa Alzubaidi & Mohammad Ali Abdelkareem, 2023. "Study on Improving the Energy Efficiency of a Building: Utilization of Daylight through Solar Film Sheets," Energies, MDPI, vol. 16(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Cai & Ling Liang & Jing Tang & Qianxian Wang & Lihong Wei & Jiaping Xie, 2019. "An Empirical Study on the Efficiency and Influencing Factors of the Photovoltaic Industry in China and an Analysis of Its Influencing Factors," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    2. Carmen María Calama-González & Ángel Luis León-Rodríguez & Rafael Suárez, 2019. "Daylighting Performance of Solar Control Films for Hospital Buildings in a Mediterranean Climate," Energies, MDPI, vol. 12(3), pages 1-19, February.
    3. Mostafa Sabbagh & Siraj Mandourah & Raghda Hareri, 2022. "Light Shelves Optimization for Daylight Improvement in Typical Public Classrooms in Saudi Arabia," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    4. Hassan Bazazzadeh & Barbara Świt-Jankowska & Nasim Fazeli & Adam Nadolny & Behnaz Safar ali najar & Seyedeh sara Hashemi safaei & Mohammadjavad Mahdavinejad, 2021. "Efficient Shading Device as an Important Part of Daylightophil Architecture; a Designerly Framework of High-Performance Architecture for an Office Building in Tehran," Energies, MDPI, vol. 14(24), pages 1-26, December.
    5. Hadeed Ashraf & Muhammad Sultan & Uzair Sajjad & Muhammad Wakil Shahzad & Muhammad Farooq & Sobhy M. Ibrahim & Muhammad Usman Khan & Muhammad Ahmad Jamil, 2022. "Potential Investigation of Membrane Energy Recovery Ventilators for the Management of Building Air-Conditioning Loads," Energies, MDPI, vol. 15(6), pages 1-23, March.
    6. Ziyuan Tang & Hasan Dinçer, 2019. "Selecting the House-of-Quality-Based Energy Investment Policies for the Sustainable Emerging Economies," Sustainability, MDPI, vol. 11(13), pages 1-22, June.
    7. Raghunathan Krishankumar & Arunodaya Raj Mishra & Kattur Soundarapandian Ravichandran & Xindong Peng & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Abbas Mardani, 2020. "A Group Decision Framework for Renewable Energy Source Selection under Interval-Valued Probabilistic linguistic Term Set," Energies, MDPI, vol. 13(4), pages 1-25, February.
    8. Bartosz Ceran, 2020. "Multi-Criteria Comparative Analysis of Clean Hydrogen Production Scenarios," Energies, MDPI, vol. 13(16), pages 1-21, August.
    9. Domenico Campisi & Simone Gitto & Donato Morea, 2018. "Shari’ah-Compliant Finance: A Possible Novel Paradigm for Green Economy Investments in Italy," Sustainability, MDPI, vol. 10(11), pages 1-12, October.
    10. Jie Li & Qichao Ban & Xueming (Jimmy) Chen & Jiawei Yao, 2019. "Glazing Sizing in Large Atrium Buildings: A Perspective of Balancing Daylight Quantity and Visual Comfort," Energies, MDPI, vol. 12(4), pages 1-14, February.
    11. Antonio Peña-García, 2022. "An Approach for Lighting Calculations in Indoor Mirrored Facilities Based on Virtual Twin-Spaces," Sustainability, MDPI, vol. 14(19), pages 1-10, September.
    12. Alina Zaharia & Maria Claudia Diaconeasa & Laura Brad & Georgiana-Raluca Lădaru & Corina Ioanăș, 2019. "Factors Influencing Energy Consumption in the Context of Sustainable Development," Sustainability, MDPI, vol. 11(15), pages 1-28, August.
    13. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    14. Mu Li & Li Li & Wadim Strielkowski, 2019. "The Impact of Urbanization and Industrialization on Energy Security: A Case Study of China," Energies, MDPI, vol. 12(11), pages 1-22, June.
    15. In-Tae Kim & Yu-Sin Kim & Hyeonggon Nam & Taeyon Hwang, 2018. "Advanced Dimming Control Algorithm for Sustainable Buildings by Daylight Responsive Dimming System," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    16. Jaewook Lee & Mohamed Boubekri & Feng Liang, 2019. "Impact of Building Design Parameters on Daylighting Metrics Using an Analysis, Prediction, and Optimization Approach Based on Statistical Learning Technique," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    17. Sun, Yanyi & Liu, Xin & Ming, Yang & Liu, Xiao & Mahon, Daniel & Wilson, Robin & Liu, Hao & Eames, Philip & Wu, Yupeng, 2021. "Energy and daylight performance of a smart window: Window integrated with thermotropic parallel slat-transparent insulation material," Applied Energy, Elsevier, vol. 293(C).
    18. Tarek M. Kamel & Amany Khalil & Mohammed M. Lakousha & Randa Khalil & Mohamed Hamdy, 2024. "Optimizing the View Percentage, Daylight Autonomy, Sunlight Exposure, and Energy Use: Data-Driven-Based Approach for Maximum Space Utilization in Residential Building Stock in Hot Climates," Energies, MDPI, vol. 17(3), pages 1-27, January.
    19. Moncef Krarti, 2019. "Evaluation of Energy Efficiency Potential for the Building Sector in the Arab Region," Energies, MDPI, vol. 12(22), pages 1-45, November.
    20. Rudai Shan & Lars Junghans, 2023. "Multi-Objective Optimization for High-Performance Building Facade Design: A Systematic Literature Review," Sustainability, MDPI, vol. 15(21), pages 1-33, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1090-:d:1040557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.