IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p800-d1031327.html
   My bibliography  Save this article

Electrical Load Classification with Open-Set Recognition

Author

Listed:
  • Dániel István Németh

    (Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary)

  • Kálmán Tornai

    (Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary)

Abstract

Full utilization of renewable energy resources is a difficult task due to the constantly changing demand-side load of the electrical grid. Demand-side management would solve this crucial problem. To enable demand-side management, knowledge about the composition of the grid load is required, as well as the ability to schedule individual loads. There are proposed Smart Plugs presented in the literature capable of such tasks. The problem, however, is that these methods lack the ability to detect if a previously unseen electrical load is connected. Misclassification of such loads presents a problem for load estimation and scheduling. Open-set recognition methods solve this problem by providing a way to detect samples not belonging to any class used during the training of the classifier. This paper evaluates the novel application of open-set recognition methods to the problem of load classification. Two approaches were examined, and both offer promising results. A Support Vector Machine based approach was first evaluated. The second, more robust method used a modified OpenMax-based algorithm to detect unseen loads.

Suggested Citation

  • Dániel István Németh & Kálmán Tornai, 2023. "Electrical Load Classification with Open-Set Recognition," Energies, MDPI, vol. 16(2), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:800-:d:1031327
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/800/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/800/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Noor, Sana & Yang, Wentao & Guo, Miao & van Dam, Koen H. & Wang, Xiaonan, 2018. "Energy Demand Side Management within micro-grid networks enhanced by blockchain," Applied Energy, Elsevier, vol. 228(C), pages 1385-1398.
    2. Sana Iqbal & Mohammad Sarfraz & Mohammad Ayyub & Mohd Tariq & Ripon K. Chakrabortty & Michael J. Ryan & Basem Alamri, 2021. "A Comprehensive Review on Residential Demand Side Management Strategies in Smart Grid Environment," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Turki Alsuwian & Aiman Shahid Butt & Arslan Ahmed Amin, 2022. "Smart Grid Cyber Security Enhancement: Challenges and Solutions—A Review," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    3. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    4. Xia, Wanjun & Murshed, Muntasir & Khan, Zeeshan & Chen, Zhenling & Ferraz, Diogo, 2022. "Exploring the nexus between fiscal decentralization and energy poverty for China: Does country risk matter for energy poverty reduction?," Energy, Elsevier, vol. 255(C).
    5. Abdulrashid Muhammad Kabir & Mohsin Kamal & Fiaz Ahmad & Zahid Ullah & Fahad R. Albogamy & Ghulam Hafeez & Faizan Mehmood, 2021. "Optimized Economic Load Dispatch with Multiple Fuels and Valve-Point Effects Using Hybrid Genetic–Artificial Fish Swarm Algorithm," Sustainability, MDPI, vol. 13(19), pages 1-27, September.
    6. Byeongtae Ahn, 2022. "Implementation and Early Adoption of an Ethereum-Based Electronic Voting System for the Prevention of Fraudulent Voting," Sustainability, MDPI, vol. 14(5), pages 1-16, March.
    7. Maarten Evens & Patricia Ercoli & Alessia Arteconi, 2023. "Blockchain-Enabled Microgrids: Toward Peer-to-Peer Energy Trading and Flexible Demand Management," Energies, MDPI, vol. 16(18), pages 1-24, September.
    8. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    9. Shengmin Tan & Xu Wang & Chuanwen Jiang, 2019. "Privacy-Preserving Energy Scheduling for ESCOs Based on Energy Blockchain Network," Energies, MDPI, vol. 12(8), pages 1-16, April.
    10. Ahl, Amanda & Yarime, Masaru & Tanaka, Kenji & Sagawa, Daishi, 2019. "Review of blockchain-based distributed energy: Implications for institutional development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 200-211.
    11. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    12. Abdelfettah Kerboua & Fouad Boukli-Hacene & Khaldoon A Mourad, 2020. "Particle Swarm Optimization for Micro-Grid Power Management and Load Scheduling," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 71-80.
    13. Tarashandeh, Nader & Karimi, Ali, 2024. "Peer-to-peer energy trading under distribution network constraints with preserving independent nature of agents," Applied Energy, Elsevier, vol. 355(C).
    14. Han, Dong & Zhang, Chengzhenghao & Ping, Jian & Yan, Zheng, 2020. "Smart contract architecture for decentralized energy trading and management based on blockchains," Energy, Elsevier, vol. 199(C).
    15. Huang, Z.F. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2023. "Development of a novel grid-free district cooling system considering blockchain-based demand response management," Applied Energy, Elsevier, vol. 342(C).
    16. Ioanna Andreoulaki & Aikaterini Papapostolou & Vangelis Marinakis, 2024. "Evaluating the Barriers to Blockchain Adoption in the Energy Sector: A Multicriteria Approach Using the Analytical Hierarchy Process for Group Decision Making," Energies, MDPI, vol. 17(6), pages 1-27, March.
    17. Ma, Chao-Qun & Lei, Yu-Tian & Ren, Yi-Shuai & Chen, Xun-Qi & Wang, Yi-Ran & Narayan, Seema, 2024. "Systematic analysis of the blockchain in the energy sector: Trends, issues, and future directions," Telecommunications Policy, Elsevier, vol. 48(2).
    18. Spandagos, Constantine & Yarime, Masaru & Baark, Erik & Ng, Tze Ling, 2020. "“Triple Target” policy framework to influence household energy behavior: Satisfy, strengthen, include," Applied Energy, Elsevier, vol. 269(C).
    19. Esmaeil Valipour & Ramin Nourollahi & Kamran Taghizad-Tavana & Sayyad Nojavan & As’ad Alizadeh, 2022. "Risk Assessment of Industrial Energy Hubs and Peer-to-Peer Heat and Power Transaction in the Presence of Electric Vehicles," Energies, MDPI, vol. 15(23), pages 1-24, November.
    20. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:800-:d:1031327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.