IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p693-d1027727.html
   My bibliography  Save this article

Modelling and Energy Management of an Off-Grid Distributed Energy System: A Typical Community Scenario in South Africa

Author

Listed:
  • Adewale Zakariyahu Obaro

    (Department of Electrical Engineering, Tshwane University of Technology, Staatsartillerie Rd, Pretoria West, Pretoria 0183, South Africa)

  • Josiah Lange Munda

    (Department of Electrical Engineering, Tshwane University of Technology, Staatsartillerie Rd, Pretoria West, Pretoria 0183, South Africa)

  • Adedayo Adedamola YUSUFF

    (Department of Electrical Engineering, University of South Africa, Florida Campus, Johannesburg 1709, South Africa)

Abstract

Conventional power systems have been heavily dependent on fossil fuel to meet the increasing energy demand due to exponential population growth and diverse technological advancements. This paper presents an optimal energy model and power management of an off-grid distributed energy system (DES) capable of providing sustainable and economic power supply to electrical loads. The paper models and co-optimizes multi-energy generations as a central objective for reliable and economic power supply to electrical loads while simultaneously satisfying a set of system and operational parameters. In addition, mixed integer nonlinear programing (MINLP) optimization technique is exploited to maximize power system generation between interconnected energy sources and dynamic electrical load with highest reliability and minimum operational and emission costs. Due to frequent battery cycling operation in the DES, rainflow algorithm is applied to the optimization result to estimate the depth of discharge (DOD) and subsequently count the number of cycles. The validity and performance of the power management strategy is evaluated with an aggregate load demand scenario of sixty households as a benchmark in a MATLAB program. The simulation results indicate the capability and effectiveness of optimal DES model through an enhanced MINLP optimization program in terms of significant operational costs and emission reduction of the diesel generator (DG). Specifically, the deployment of DES minimizes the daily operational cost by 71.53%. The results further indicate a drastic reduction in CO 2 emissions, with 22.76% reduction for the residential community load scenario in contrast to the exclusive DG system. This study provides a framework on the economic feasibility and effective planning of green energy systems (GESs) with efficient optimization techniques with capability for further development.

Suggested Citation

  • Adewale Zakariyahu Obaro & Josiah Lange Munda & Adedayo Adedamola YUSUFF, 2023. "Modelling and Energy Management of an Off-Grid Distributed Energy System: A Typical Community Scenario in South Africa," Energies, MDPI, vol. 16(2), pages 1-30, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:693-:d:1027727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/693/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/693/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Odou, Oluwarotimi Delano Thierry & Bhandari, Ramchandra & Adamou, Rabani, 2020. "Hybrid off-grid renewable power system for sustainable rural electrification in Benin," Renewable Energy, Elsevier, vol. 145(C), pages 1266-1279.
    2. Fan Li & Dong Liu & Boyu Qin & Ke Sun & Dan Wang & Hanqing Liang & Cheng Zhang & Taikun Tao, 2022. "Multi-Objective Energy Optimal Scheduling of Multiple Pulsed Loads in Isolated Power Systems," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
    3. Moradi, Hadis & Esfahanian, Mahdi & Abtahi, Amir & Zilouchian, Ali, 2018. "Optimization and energy management of a standalone hybrid microgrid in the presence of battery storage system," Energy, Elsevier, vol. 147(C), pages 226-238.
    4. Mohsin Shahzad & Arsalan Qadir & Noman Ullah & Zahid Mahmood & Naufal Mohamad Saad & Syed Saad Azhar Ali, 2022. "Optimization of On-Grid Hybrid Renewable Energy System: A Case Study on Azad Jammu and Kashmir," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    5. Mintz-Woo, Kian & Leroux, Justin, 2021. "What do climate change winners owe, and to whom?," Economics and Philosophy, Cambridge University Press, vol. 37(3), pages 462-483, November.
    6. Mohsin Shahzad & Waseem Akram & Muhammad Arif & Uzair Khan & Barkat Ullah, 2021. "Optimal Siting and Sizing of Distributed Generators by Strawberry Plant Propagation Algorithm," Energies, MDPI, vol. 14(6), pages 1-13, March.
    7. Gou, Xing & Chen, Qun & Sun, Yong & Ma, Huan & Li, Bao-Ju, 2021. "Holistic analysis and optimization of distributed energy system considering different transport characteristics of multi-energy and component efficiency variation," Energy, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan Li & Dong Liu & Boyu Qin & Ke Sun & Dan Wang & Hanqing Liang & Cheng Zhang & Taikun Tao, 2022. "Multi-Objective Energy Optimal Scheduling of Multiple Pulsed Loads in Isolated Power Systems," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
    2. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Mohsin Shahzad & Arsalan Qadir & Noman Ullah & Zahid Mahmood & Naufal Mohamad Saad & Syed Saad Azhar Ali, 2022. "Optimization of On-Grid Hybrid Renewable Energy System: A Case Study on Azad Jammu and Kashmir," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    4. Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
    5. Xu, Rong-Hong & Zhao, Tian & Ma, Huan & He, Ke-Lun & Lv, Hong-Kun & Guo, Xu-Tao & Chen, Qun, 2023. "Operation optimization of distributed energy systems considering nonlinear characteristics of multi-energy transport and conversion processes," Energy, Elsevier, vol. 283(C).
    6. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    7. Mensah, Johnson Herlich Roslee & dos Santos, Ivan Felipe Silva & Tiago Filho, Geraldo Lúcio, 2023. "A critical analysis of the energy situation in the Benin Republic and its evolution over the last decade," Renewable Energy, Elsevier, vol. 202(C), pages 634-650.
    8. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    9. Yassine Charabi & Sabah Abdul-Wahab & Abdul Majeed Al-Mahruqi & Selma Osman & Isra Osman, 2022. "The potential estimation and cost analysis of wind energy production in Oman," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5917-5937, April.
    10. Chinna Alluraiah Nallolla & Vijayapriya Perumal, 2022. "Optimal Design of a Hybrid Off-Grid Renewable Energy System Using Techno-Economic and Sensitivity Analysis for a Rural Remote Location," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    11. Abdullah Al Abri & Abdullah Al Kaaf & Musaab Allouyahi & Ali Al Wahaibi & Razzaqul Ahshan & Rashid S. Al Abri & Ahmed Al Abri, 2022. "Techno-Economic and Environmental Analysis of Renewable Mix Hybrid Energy System for Sustainable Electrification of Al-Dhafrat Rural Area in Oman," Energies, MDPI, vol. 16(1), pages 1-23, December.
    12. Mahmoud H. Elkholy & Tomonobu Senjyu & Mohammed Elsayed Lotfy & Abdelrahman Elgarhy & Nehad S. Ali & Tamer S. Gaafar, 2022. "Design and Implementation of a Real-Time Smart Home Management System Considering Energy Saving," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
    13. Jingyu Liu & Weidong Meng & Bo Huang & Yuyu Li, 2022. "Factors Influencing Intergovernmental Cooperation on Emission Reduction in Chengdu-Chongqing Urban Agglomeration: An Evolutionary Game Theory Perspective," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    14. García-Villoria, Alberto & Domenech, Bruno & Ferrer-Martí, Laia & Juanpera, Marc & Pastor, Rafael, 2020. "Ad-hoc heuristic for design of wind-photovoltaic electrification systems, including management constraints," Energy, Elsevier, vol. 212(C).
    15. Dariusz Tarnapowicz & Sergey German-Galkin & Arkadiusz Nerc & Marek Jaskiewicz, 2023. "Improving the Energy Efficiency of a Ship’s Power Plant by Using an Autonomous Hybrid System with a PMSG," Energies, MDPI, vol. 16(7), pages 1-19, March.
    16. Elkadeem, Mohamed R. & Kotb, Kotb M. & Abido, Mohamed A. & Hasanien, Hany M. & Atiya, Eman G. & Almakhles, Dhafer & Elmorshedy, Mahmoud F., 2024. "Techno-enviro-socio-economic design and finite set model predictive current control of a grid-connected large-scale hybrid solar/wind energy system: A case study of Sokhna Industrial Zone, Egypt," Energy, Elsevier, vol. 289(C).
    17. Aktas, Ahmet & Erhan, Koray & Özdemir, Sule & Özdemir, Engin, 2018. "Dynamic energy management for photovoltaic power system including hybrid energy storage in smart grid applications," Energy, Elsevier, vol. 162(C), pages 72-82.
    18. Muntasir Murshed & Mohamed Elheddad & Rizwan Ahmed & Mohga Bassim & Ei Thuzar Than, 2022. "Foreign Direct Investments, Renewable Electricity Output, and Ecological Footprints: Do Financial Globalization Facilitate Renewable Energy Transition and Environmental Welfare in Bangladesh?," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(1), pages 33-78, March.
    19. Hannah Bradley & Serena Stein, 2022. "Climate opportunism and values of change on the Arctic agricultural frontier," Economic Anthropology, Wiley Blackwell, vol. 9(2), pages 207-222, June.
    20. Homeyra Akter & Harun Or Rashid Howlader & Ahmed Y. Saber & Paras Mandal & Hiroshi Takahashi & Tomonobu Senjyu, 2021. "Optimal Sizing of Hybrid Microgrid in a Remote Island Considering Advanced Direct Load Control for Demand Response and Low Carbon Emission," Energies, MDPI, vol. 14(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:693-:d:1027727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.