IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7517-d1277451.html
   My bibliography  Save this article

Enhancing Islanded Power Systems: Microgrid Modeling and Evaluating System Benefits of Ocean Renewable Energy Integration

Author

Listed:
  • Miguel Vicente

    (WavEC Offshore Renewables, Edifício Diogo Cão, Doca de Alcântara Norte, 1350-352 Lisbon, Portugal)

  • Alessandra Imperadore

    (WavEC Offshore Renewables, Edifício Diogo Cão, Doca de Alcântara Norte, 1350-352 Lisbon, Portugal)

  • Francisco X. Correia da Fonseca

    (WavEC Offshore Renewables, Edifício Diogo Cão, Doca de Alcântara Norte, 1350-352 Lisbon, Portugal)

  • Mário Vieira

    (WavEC Offshore Renewables, Edifício Diogo Cão, Doca de Alcântara Norte, 1350-352 Lisbon, Portugal)

  • José Cândido

    (WavEC Offshore Renewables, Edifício Diogo Cão, Doca de Alcântara Norte, 1350-352 Lisbon, Portugal)

Abstract

The energy transition hinges on the effective integration of renewable energy sources into the power grid. Islands can provide invaluable insights into the challenges and opportunities of integrating variable renewable energy into the grid due to their relatively small power systems, isolated grids, and diverse availability of renewable energy resources. This paper presents a study on the system benefits and challenges of marine energy integration in insular power systems, focusing on the Orkney Islands as a case study. A microgrid modeling approach that optimizes the mix of renewable sources and energy storage systems for future scenarios considering strategic time horizons (2030, 2040, and 2050) was employed. Results suggest that integrating ocean energies, namely, wave and tidal energy, yields notable benefits compared to traditional renewable energy sources exclusively. These benefits encompass reduced installed capacity, minimized energy storage requirements, lower excess generation, and overall cost-saving.

Suggested Citation

  • Miguel Vicente & Alessandra Imperadore & Francisco X. Correia da Fonseca & Mário Vieira & José Cândido, 2023. "Enhancing Islanded Power Systems: Microgrid Modeling and Evaluating System Benefits of Ocean Renewable Energy Integration," Energies, MDPI, vol. 16(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7517-:d:1277451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7517/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pennock, Shona & Coles, Daniel & Angeloudis, Athanasios & Bhattacharya, Saptarshi & Jeffrey, Henry, 2022. "Temporal complementarity of marine renewables with wind and solar generation: Implications for GB system benefits," Applied Energy, Elsevier, vol. 319(C).
    2. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    3. Meschede, Henning & Holzapfel, Peter & Kadelbach, Florian & Hesselbach, Jens, 2016. "Classification of global island regarding the opportunity of using RES," Applied Energy, Elsevier, vol. 175(C), pages 251-258.
    4. Neto, Pedro Bezerra Leite & Saavedra, Osvaldo R. & Oliveira, Denisson Q., 2020. "The effect of complementarity between solar, wind and tidal energy in isolated hybrid microgrids," Renewable Energy, Elsevier, vol. 147(P1), pages 339-355.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yajing Gu & He Ren & Hongwei Liu & Yonggang Lin & Weifei Hu & Tian Zou & Liyuan Zhang & Luoyang Huang, 2024. "Simulation of a Tidal Current-Powered Freshwater and Energy Supply System for Sustainable Island Development," Sustainability, MDPI, vol. 16(20), pages 1-24, October.
    2. Satymov, Rasul & Bogdanov, Dmitrii & Dadashi, Mojtaba & Lavidas, George & Breyer, Christian, 2024. "Techno-economic assessment of global and regional wave energy resource potentials and profiles in hourly resolution," Applied Energy, Elsevier, vol. 364(C).
    3. Canales, Fausto A. & Sapiega, Patryk & Kasiulis, Egidijus & Jonasson, Erik & Temiz, Irina & Jurasz, Jakub, 2024. "Temporal dynamics and extreme events in solar, wind, and wave energy complementarity: Insights from the Polish Exclusive Economic Zone," Energy, Elsevier, vol. 305(C).
    4. Pedruzzi, Rizzieri & Silva, Allan Rodrigues & Soares dos Santos, Thalyta & Araujo, Allan Cavalcante & Cotta Weyll, Arthur Lúcide & Lago Kitagawa, Yasmin Kaore & Nunes da Silva Ramos, Diogo & Milani de, 2023. "Review of mapping analysis and complementarity between solar and wind energy sources," Energy, Elsevier, vol. 283(C).
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    7. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    8. Gioutsos, Dean Marcus & Blok, Kornelis & van Velzen, Leonore & Moorman, Sjoerd, 2018. "Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe," Applied Energy, Elsevier, vol. 226(C), pages 437-449.
    9. Tatiana Potapenko & Jessica S. Döhler & Francisco Francisco & George Lavidas & Irina Temiz, 2023. "Renewable Energy Potential for Micro-Grid at Hvide Sande," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    10. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    11. Liu, Liuchen & Cui, Guomin & Chen, Jiaxing & Huang, Xiaohuang & Li, Di, 2022. "Two-stage superstructure model for optimization of distributed energy systems (DES) part I: Model development and verification," Energy, Elsevier, vol. 245(C).
    12. Meschede, Henning & Dunkelberg, Heiko & Stöhr, Fabian & Peesel, Ron-Hendrik & Hesselbach, Jens, 2017. "Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods," Energy, Elsevier, vol. 128(C), pages 86-100.
    13. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    14. Ika Kurniawati & Beatriz Beaumont & Ramon Varghese & Danka Kostadinović & Ivan Sokol & Hassan Hemida & Panagiotis Alevras & Charalampos Baniotopoulos, 2023. "Conceptual Design of a Floating Modular Energy Island for Energy Independency: A Case Study in Crete," Energies, MDPI, vol. 16(16), pages 1-21, August.
    15. Rafael B. S. Veras & Clóvis B. M. Oliveira & Shigeaki L. de Lima & Osvaldo R. Saavedra & Denisson Q. Oliveira & Felipe M. Pimenta & Denivaldo C. P. Lopes & Audálio R. Torres Junior & Francisco L. A. N, 2023. "Assessing Economic Complementarity in Wind–Solar Hybrid Power Plants Connected to the Brazilian Grid," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    16. Soomauroo, Zakia & Blechinger, Philipp & Creutzig, Felix, 2023. "Electrifying public transit benefits public finances in small island developing states," Transport Policy, Elsevier, vol. 138(C), pages 45-59.
    17. Akdemir, Kerem Ziya & Robertson, Bryson & Oikonomou, Konstantinos & Kern, Jordan & Voisin, Nathalie & Hanif, Sarmad & Bhattacharya, Saptarshi, 2023. "Opportunities for wave energy in bulk power system operations," Applied Energy, Elsevier, vol. 352(C).
    18. Keisar, David & Arava, Idan & Greenblatt, David, 2024. "Dynamic-stall-driven vertical axis wind turbine: An experimental parametric study," Applied Energy, Elsevier, vol. 365(C).
    19. Meschede, Henning, 2019. "Increased utilisation of renewable energies through demand response in the water supply sector – A case study," Energy, Elsevier, vol. 175(C), pages 810-817.
    20. Jakub Jurasz & Jerzy Mikulik & Paweł B. Dąbek & Mohammed Guezgouz & Bartosz Kaźmierczak, 2021. "Complementarity and ‘Resource Droughts’ of Solar and Wind Energy in Poland: An ERA5-Based Analysis," Energies, MDPI, vol. 14(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7517-:d:1277451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.