IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7472-d1275696.html
   My bibliography  Save this article

Model-Driven Membrane Electrode Assembly Design for High-Performing Open-Cathode Polymer Electrolyte Membrane Fuel Cells

Author

Listed:
  • Anand Sagar

    (School of Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC V3T 0A3, Canada
    Alternative Energy-1 Department, Indian Oil R&D Centre, Sector-13, Faridabad 121007, India)

  • Sachin Chugh

    (Alternative Energy-1 Department, Indian Oil R&D Centre, Sector-13, Faridabad 121007, India)

  • Erik Kjeang

    (School of Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC V3T 0A3, Canada)

Abstract

Open-cathode fuel cells use air cooling to effectively reduce system cost. However, due to the challenging hygrothermal environment, they generally suffer from low performance compared to conventional, liquid-cooled cells. A pre-validated, three-dimensional computational model is used in the present work to determine the effects of different sub-component designs, namely the polymeric membrane, composition of the cathode catalyst layer (CCL), and structure of the cathode microporous layer (CMPL), on the performance of an open-cathode fuel cell. This comprehensive parametric study performed on a total of 90 cases shows the increment in current density to be 7% and 31% by improvising the membrane and CCL design, respectively, at 0.6 V. A steep increase of 87% is also achieved by strategically modifying the CMPL design at 0.4 V operation. An overall increment of 119% and 131% in current density is achieved for the best membrane electrode assembly (MEA) design at 0.6 and 0.4 V, respectively, as compared to the baseline design. These improvements are achieved by collective improvements in kinetics, oxygen mass transport, ohmic resistance, self-heating, and water retention in the ionomer phase. The proposed MEA design could facilitate open-cathode fuel cell stacks with 2× higher power output or 56% lower weight and materials cost for a given power demand.

Suggested Citation

  • Anand Sagar & Sachin Chugh & Erik Kjeang, 2023. "Model-Driven Membrane Electrode Assembly Design for High-Performing Open-Cathode Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 16(22), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7472-:d:1275696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7472/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7472/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas, Sobi & Bates, Alex & Park, Sam & Sahu, A.K. & Lee, Sang C. & Son, Byung Rak & Kim, Joo Gon & Lee, Dong-Ha, 2016. "An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 765-776.
    2. Cao, Tao-Feng & Lin, Hong & Chen, Li & He, Ya-Ling & Tao, Wen-Quan, 2013. "Numerical investigation of the coupled water and thermal management in PEM fuel cell," Applied Energy, Elsevier, vol. 112(C), pages 1115-1125.
    3. Eriksson, E.L.V. & Gray, E.MacA., 2017. "Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review," Applied Energy, Elsevier, vol. 202(C), pages 348-364.
    4. Song Yan & Mingyang Yang & Chuanyu Sun & Sichuan Xu, 2023. "Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method," Energies, MDPI, vol. 16(16), pages 1-18, August.
    5. Wasselynck, Guillaume & Auvity, Bruno & Olivier, Jean-Christophe & Trichet, Didier & Josset, Christophe & Maindru, Philippe, 2012. "Design and testing of a fuel cell powertrain with energy constraints," Energy, Elsevier, vol. 38(1), pages 414-424.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rostami, Leila & Haghshenasfard, Masoud & Sadeghi, Morteza & Zhiani, Mohammad, 2022. "A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC," Energy, Elsevier, vol. 258(C).
    2. Zhao, Chen & Li, Baozhu & Zhang, Lu & Han, Yaru & Wu, Xiaoyu, 2023. "Novel optimal structure design and testing of air-cooled open-cathode proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 215(C).
    3. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    4. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    5. Nicolas Muck & Christoph David & Torsten Knöri, 2023. "Integrating Fiber Sensing for Spatially Resolved Temperature Measurement in Fuel Cells," Energies, MDPI, vol. 17(1), pages 1-17, December.
    6. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    8. Sieben, J.M. & Morallón, E. & Cazorla-Amorós, D., 2013. "Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods," Energy, Elsevier, vol. 58(C), pages 519-526.
    9. Teng Teng & Xin Zhang & Qicheng Xue & Baodi Zhang, 2024. "Research of Proton Exchange Membrane Fuel Cell Modeling on Concentration Polarization under Variable-Temperature Operating Conditions," Energies, MDPI, vol. 17(3), pages 1-17, February.
    10. Yi Zhang & Qiang Guo & Jie Song, 2023. "Internet-Distributed Hardware-in-the-Loop Simulation Platform for Plug-In Fuel Cell Hybrid Vehicles," Energies, MDPI, vol. 16(18), pages 1-17, September.
    11. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    12. Zhao, Chen & Wang, Fei, 2023. "Optimal performance and modeling study of air-cooled proton exchange membrane fuel cell with various bipolar plate structure," Applied Energy, Elsevier, vol. 345(C).
    13. Liu, Hong & Zhao, Yue & Gu, Chenghong & Ge, Shaoyun & Yang, Zan, 2021. "Adjustable capability of the distributed energy system: Definition, framework, and evaluation model," Energy, Elsevier, vol. 222(C).
    14. Zhiyong Li & Wenbin Wu & Yang Si & Xiaotao Chen, 2023. "Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties," Energies, MDPI, vol. 16(22), pages 1-15, November.
    15. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    16. Chen, Ke & Luo, Zongkai & Zou, Guofu & He, Dandi & Xiong, Zhongzhuang & Zhou, Yu & Chen, Ben, 2024. "Multi-objective optimization of gradient gas diffusion layer structures for enhancing proton exchange membrane fuel cell performance based on response surface methodology and non-dominated sorting gen," Energy, Elsevier, vol. 288(C).
    17. Zhang, Qinguo & Tong, Zheming & Tong, Shuiguang & Cheng, Zhewu, 2021. "Self-humidifying effect of air self-circulation system for proton exchange membrane fuel cell engines," Renewable Energy, Elsevier, vol. 164(C), pages 1143-1155.
    18. Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
    19. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    20. Wang, Hao-Nan & Zhu, Xun & Chen, Rong & Yang, Yang & Ye, Ding-Ding & Liao, Qiang, 2022. "Two-phase mass transport model for microfluidic fuel cell with narrow electrolyte flow channel," Applied Energy, Elsevier, vol. 322(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7472-:d:1275696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.