IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7334-d1270101.html
   My bibliography  Save this article

EECO: An AI-Based Algorithm for Energy-Efficient Comfort Optimisation

Author

Listed:
  • Giacomo Segala

    (Energenius s.r.l., 38068 Rovereto, Italy
    Fondazione Bruno Kessler (FBK), 38123 Trento, Italy
    Department of Information Engineering and Computer Science (DISI), University of Trento, 38123 Trento, Italy)

  • Roberto Doriguzzi-Corin

    (Fondazione Bruno Kessler (FBK), 38123 Trento, Italy)

  • Claudio Peroni

    (Energenius s.r.l., 38068 Rovereto, Italy)

  • Matteo Gerola

    (Energenius s.r.l., 38068 Rovereto, Italy)

  • Domenico Siracusa

    (Fondazione Bruno Kessler (FBK), 38123 Trento, Italy)

Abstract

Environmental comfort takes a central role in the well-being and health of people. In modern industrial, commercial, and residential buildings, passive energy sources (such as solar irradiance and heat exchangers) and heating, ventilation, and air conditioning (HVAC) systems are usually employed to achieve the required comfort. While passive strategies can effectively enhance the livability of indoor spaces with limited or no energy cost, active strategies based on HVAC machines are often preferred to have direct control over the environment. Commonly, the working parameters of such machines are manually tuned to a fixed set point during working hours or throughout the whole day, leading to inefficiencies in terms of comfort and energy consumption. Albeit effective, previous works that tackle the comfort–energy tradeoff are tailored to the specific environment under study (in terms of geometry, characteristics of the building, etc.) and thus cannot be applied on a large industrial scale. We address the problem from a different angle and propose an adaptive and practical solution for comfort optimisation. It does not require the intervention of expert personnel or any customisations around the environment while it implicitly analyses the influence of different agents (e.g., passive phenomena) on the monitored parameters. A convolutional neural network (CNN) predicts the long-term impact on thermal comfort and energy consumption of a range of possible actuation strategies for the HVAC system. The decision on the best HVAC settings is taken by choosing the combination of ON/OFF and set point (SP), which optimises thermal comfort and, at the same time, minimises energy consumption. We validate our solution in a real-world scenario and through software simulations, providing a performance comparison against the fixed set point strategy and a greedy approach. The evaluation results show that our solution achieves the desired thermal comfort while reducing the energy footprint by up to approximately 16% in a real environment.

Suggested Citation

  • Giacomo Segala & Roberto Doriguzzi-Corin & Claudio Peroni & Matteo Gerola & Domenico Siracusa, 2023. "EECO: An AI-Based Algorithm for Energy-Efficient Comfort Optimisation," Energies, MDPI, vol. 16(21), pages 1-28, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7334-:d:1270101
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7334/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7334/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2020. "Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization," Applied Energy, Elsevier, vol. 271(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiaoqi & Lee, Seungjae & Bilionis, Ilias & Karava, Panagiota & Joe, Jaewan & Sadeghi, Seyed Amir, 2021. "A user-interactive system for smart thermal environment control in office buildings," Applied Energy, Elsevier, vol. 298(C).
    2. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    3. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    4. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    5. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    6. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    7. Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    8. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2021. "Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control," Applied Energy, Elsevier, vol. 288(C).
    9. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
    10. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
    11. Wang, Xuezheng & Dong, Bing, 2024. "Long-term experimental evaluation and comparison of advanced controls for HVAC systems," Applied Energy, Elsevier, vol. 371(C).
    12. Angizeh, Farhad & Ghofrani, Ali & Zaidan, Esmat & Jafari, Mohsen A., 2022. "Adaptable scheduling of smart building communities with thermal mapping and demand flexibility," Applied Energy, Elsevier, vol. 310(C).
    13. Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
    14. Nastro, Francesco & Sorrentino, Marco & Trifirò, Alena, 2022. "A machine learning approach based on neural networks for energy diagnosis of telecommunication sites," Energy, Elsevier, vol. 245(C).
    15. Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
    16. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    17. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    18. Yang, Shiyu & Wan, Man Pun, 2022. "Machine-learning-based model predictive control with instantaneous linearization – A case study on an air-conditioning and mechanical ventilation system," Applied Energy, Elsevier, vol. 306(PB).
    19. Xiao, Tianqi & You, Fengqi, 2024. "Physically consistent deep learning-based day-ahead energy dispatching and thermal comfort control for grid-interactive communities," Applied Energy, Elsevier, vol. 353(PB).
    20. Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "Multi-criteria evaluation of novel multi-objective model predictive control method for indoor thermal comfort," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7334-:d:1270101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.