IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7177-d1264251.html
   My bibliography  Save this article

Reductions in Energy Consumption and Emission of Harmful Exhaust Gases by Fishing Vessels

Author

Listed:
  • Cezary Behrendt

    (Faculty of Marine Engineering, Maritime University of Szczecin, 70-500 Szczecin, Poland)

  • Oleh Klyus

    (Faculty of Marine Engineering, Maritime University of Szczecin, 70-500 Szczecin, Poland)

  • Marcin Szczepanek

    (Faculty of Marine Engineering, Maritime University of Szczecin, 70-500 Szczecin, Poland)

Abstract

This article presents an analysis of the influence of engine types, fuel types and selected methods of fuel treatment before injection on reductions in fuel consumption and exhaust emission components. This is the first of such studies, the continuation of which will allow a comprehensive assessment of the impact of cutter operations on environmental pollution. For the selected type of cutter, EEOIs (Energy Efficiency Operational Indicators) were determined to be a measure that takes into account both fuel consumption and harmful gas compound emissions depending on the type of engine used and the type of fuel. The data necessary to prepare this analysis were obtained during operational tests carried out on selected cutters with various types of engines fuelled with liquid fuel and a new catalytic fuel treatment method developed by the authors, while for the case of using gas fuel and a common rail engine, possible effects were forecasted. The effects of engine type, years of manufacture and fuel type (liquid and gas) on fuel consumption and emissions of selected exhaust components are demonstrated. The positive effects on fuel consumption and emissions of harmful exhaust constituents obtained, under laboratory test conditions, for an engine fuelled with catalytically treated fuel have allowed further research directions to be set for cutter engines equipped with injection equipment with applied catalytic coatings.

Suggested Citation

  • Cezary Behrendt & Oleh Klyus & Marcin Szczepanek, 2023. "Reductions in Energy Consumption and Emission of Harmful Exhaust Gases by Fishing Vessels," Energies, MDPI, vol. 16(20), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7177-:d:1264251
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7177/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7177/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katarzyna Prill & Cezary Behrendt & Marcin Szczepanek & Iwona Michalska-Pożoga, 2020. "A New Method of Determining Energy Efficiency Operational Indicator for Specialized Ships," Energies, MDPI, vol. 13(5), pages 1-17, March.
    2. Kirsi Spoof-Tuomi & Seppo Niemi, 2020. "Environmental and Economic Evaluation of Fuel Choices for Short Sea Shipping," Clean Technol., MDPI, vol. 2(1), pages 1-19, January.
    3. Yoo, Byeong-Yong, 2017. "Economic assessment of liquefied natural gas (LNG) as a marine fuel for CO2 carriers compared to marine gas oil (MGO)," Energy, Elsevier, vol. 121(C), pages 772-780.
    4. Cheilari, Anna & Guillen, Jordi & Damalas, Dimitrios & Barbas, Thomas, 2013. "Effects of the fuel price crisis on the energy efficiency and the economic performance of the European Union fishing fleets," Marine Policy, Elsevier, vol. 40(C), pages 18-24.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Staffan Waldo & Anton Paulrud, 2017. "Reducing Greenhouse Gas Emissions in Fisheries: The Case of Multiple Regulatory Instruments in Sweden," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(2), pages 275-295, October.
    3. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    4. Guangliang Li & Chunlan Tan & Weikun Zhang & Wolin Zheng & Yong Liu, 2023. "Carbon Emission Efficiency, Technological Progress, and Fishery Scale Expansion: Evidence from Marine Fishery in China," Sustainability, MDPI, vol. 15(8), pages 1-20, April.
    5. Kian-Guan Lim & Michelle Lim, 2020. "Financial performance of shipping firms that increase LNG carriers and the support of eco-innovation," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-25, December.
    6. Cooper, Rachel & Jarre, Astrid, 2017. "An Agent-based Model of the South African Offshore Hake Trawl Industry: Part II Drivers and Trade-offs in Profit and Risk," Ecological Economics, Elsevier, vol. 142(C), pages 257-267.
    7. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Tromeur, Eric & Doyen, Luc & Tarizzo, Violaine & Little, L. Richard & Jennings, Sarah & Thébaud, Olivier, 2021. "Risk averse policies foster bio-economic sustainability in mixed fisheries," Ecological Economics, Elsevier, vol. 190(C).
    9. Dai, Lei & Hu, Hao & Wang, Zhaojing, 2020. "Is Shore Side Electricity greener? An environmental analysis and policy implications," Energy Policy, Elsevier, vol. 137(C).
    10. Huerta, Felipe & Vesovic, Velisa, 2019. "A realistic vapour phase heat transfer model for the weathering of LNG stored in large tanks," Energy, Elsevier, vol. 174(C), pages 280-291.
    11. Davide Borelli & Francesco Devia & Corrado Schenone & Federico Silenzi & Luca A. Tagliafico, 2021. "Dynamic Modelling of LNG Powered Combined Energy Systems in Port Areas," Energies, MDPI, vol. 14(12), pages 1-18, June.
    12. Moutopoulos, Dimitrios K. & Koutsikopoulos, Constantin, 2014. "Fishing strange data in national fisheries statistics of Greece," Marine Policy, Elsevier, vol. 48(C), pages 114-122.
    13. Natacha Carvalho & Jordi Guillen, 2021. "Economic Impact of Eliminating the Fuel Tax Exemption in the EU Fishing Fleet," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    14. Salman Farrukh & Mingqiang Li & Georgios D. Kouris & Dawei Wu & Karl Dearn & Zacharias Yerasimou & Pavlos Diamantis & Kostas Andrianos, 2023. "Pathways to Decarbonization of Deep-Sea Shipping: An Aframax Case Study," Energies, MDPI, vol. 16(22), pages 1-26, November.
    15. Guillen, Jordi & Maynou, Francesc, 2014. "Importance of temporal and spatial factors in the ex-vessel price formation for red shrimp and management implications," Marine Policy, Elsevier, vol. 47(C), pages 66-70.
    16. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    17. Wang, Shuaian & Qi, Jingwen & Laporte, Gilbert, 2022. "Governmental subsidy plan modeling and optimization for liquefied natural gas as fuel for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 304-321.
    18. Yonghan Jeon & Jongoh Nam, 2023. "Estimating Energy Efficiency and Energy Saving Potential in the Republic of Korea’s Offshore Fisheries," Sustainability, MDPI, vol. 15(20), pages 1-17, October.
    19. Fan, Feilong & Aditya, Venkataraman & Xu, Yan & Cheong, Benjamin & Gupta, Amit K., 2022. "Robustly coordinated operation of a ship microgird with hybrid propulsion systems and hydrogen fuel cells," Applied Energy, Elsevier, vol. 312(C).
    20. Jingwen Qi & Shuaian Wang, 2023. "LNG Bunkering Station Deployment Problem—A Case Study of a Chinese Container Shipping Network," Mathematics, MDPI, vol. 11(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7177-:d:1264251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.