IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7105-d1260677.html
   My bibliography  Save this article

A Novel Attention Temporal Convolutional Network for Transmission Line Fault Diagnosis via Comprehensive Feature Extraction

Author

Listed:
  • Guangxun E

    (Shandong Hi-Speed Group Co., Ltd., Shandong Hi-Speed Mansion, No. 8 Long’ao North Road, Lixia District, Jinan 250098, China)

  • He Gao

    (Shandong Key Laboratory of Intelligent Buildings Technology, School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China
    Shandong Zhengchen Technology Co., Ltd., No. 11777, Tourist Road, Jinan Area, China (Shandong) Pilot Free Trade Zone, Jinan 250101, China)

  • Youfu Lu

    (Shandong Hi-Speed Group Co., Ltd., Shandong Hi-Speed Mansion, No. 8 Long’ao North Road, Lixia District, Jinan 250098, China)

  • Xuehan Zheng

    (Shandong Key Laboratory of Intelligent Buildings Technology, School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China)

  • Xiaoying Ding

    (Shandong Zhengchen Technology Co., Ltd., No. 11777, Tourist Road, Jinan Area, China (Shandong) Pilot Free Trade Zone, Jinan 250101, China)

  • Yuanhao Yang

    (Shandong Zhengchen Technology Co., Ltd., No. 11777, Tourist Road, Jinan Area, China (Shandong) Pilot Free Trade Zone, Jinan 250101, China)

Abstract

Traditional transmission line fault diagnosis approaches ignore local structure feature information during feature extraction and cannot concentrate more attention on fault samples, which are difficult to diagnose. To figure out these issues, an enhanced feature extraction-based attention temporal convolutional network (EATCN) is developed to diagnose transmission line faults. The proposed EATCN suggests a new comprehensive feature-preserving (CFP) technique to maintain the global and local structure features of original process data during dimension reduction, where the local structure-preserving technique is incorporated into the principal component analysis model. Furthermore, to diagnose transmission line faults more effectively, a CFP-based attention TCN scheme is constructed to classify the global and local structure features of a fault snapshot dataset. To be specific, to cope with the gradient disappearance problem and improve learning capability, a skip connection attention (SCA) network is developed by incorporating a skip connection structure and two fully connected layers into the existing attention mechanism. By combining the developed SCA network with the conventional TCN’s residual blocks, an EATCN-based diagnosis model is then constructed to dynamically pay attention to various imported global and local structure features. Detailed experiments on the datasets of the simulated power system are performed to test the effectiveness of the developed EATCN-based fault diagnosis scheme.

Suggested Citation

  • Guangxun E & He Gao & Youfu Lu & Xuehan Zheng & Xiaoying Ding & Yuanhao Yang, 2023. "A Novel Attention Temporal Convolutional Network for Transmission Line Fault Diagnosis via Comprehensive Feature Extraction," Energies, MDPI, vol. 16(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7105-:d:1260677
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7105/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Yabin & Tan, Zehan & Chen, Huanxin & Li, Guannan & Wang, Jiangyu & Huang, Ronggeng & Liu, Jiangyan & Ahmad, Tanveer, 2018. "Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving," Applied Energy, Elsevier, vol. 225(C), pages 732-745.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    2. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
    3. Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
    5. Fei Mei & Yong Ren & Qingliang Wu & Chenyu Zhang & Yi Pan & Haoyuan Sha & Jianyong Zheng, 2018. "Online Recognition Method for Voltage Sags Based on a Deep Belief Network," Energies, MDPI, vol. 12(1), pages 1-16, December.
    6. Eom, Yong Hwan & Yoo, Jin Woo & Hong, Sung Bin & Kim, Min Soo, 2019. "Refrigerant charge fault detection method of air source heat pump system using convolutional neural network for energy saving," Energy, Elsevier, vol. 187(C).
    7. Tien, Paige Wenbin & Wei, Shuangyu & Liu, Tianshu & Calautit, John & Darkwa, Jo & Wood, Christopher, 2021. "A deep learning approach towards the detection and recognition of opening of windows for effective management of building ventilation heat losses and reducing space heating demand," Renewable Energy, Elsevier, vol. 177(C), pages 603-625.
    8. Wang, Jingfan & Tchapmi, Lyne P. & Ravikumar, Arvind P. & McGuire, Mike & Bell, Clay S. & Zimmerle, Daniel & Savarese, Silvio & Brandt, Adam R., 2020. "Machine vision for natural gas methane emissions detection using an infrared camera," Applied Energy, Elsevier, vol. 257(C).
    9. Li, Tingting & Zhou, Yangze & Zhao, Yang & Zhang, Chaobo & Zhang, Xuejun, 2022. "A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems," Applied Energy, Elsevier, vol. 306(PB).
    10. Du, Zhimin & Liang, Xinbin & Chen, Siliang & Zhu, Xu & Chen, Kang & Jin, Xinqiao, 2023. "Knowledge-infused deep learning diagnosis model with self-assessment for smart management in HVAC systems," Energy, Elsevier, vol. 263(PD).
    11. Jie Yang & Zhimeng Dong & Huihan Yang & Yanyan Liu & Yunjie Wang & Fujiang Chen & Haifei Chen, 2022. "Numerical and Experimental Study on Thermal Comfort of Human Body by Split-Fiber Air Conditioner," Energies, MDPI, vol. 15(10), pages 1-24, May.
    12. Guo, Yabin & Li, Yuduo & Li, Weilin, 2023. "On-site fault experiment and diagnosis research of the carbon dioxide transcritical heat pump system for energy saving," Energy, Elsevier, vol. 274(C).
    13. Jun Kwon Hwang & Patrick Nzivugira Duhirwe & Geun Young Yun & Sukho Lee & Hyeongjoon Seo & Inhan Kim & Mat Santamouris, 2020. "A Novel Hybrid Deep Neural Network Model to Predict the Refrigerant Charge Amount of Heat Pumps," Sustainability, MDPI, vol. 12(7), pages 1-23, April.
    14. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
    15. Fan, Cheng & Wu, Qiuting & Zhao, Yang & Mo, Like, 2024. "Integrating active learning and semi-supervised learning for improved data-driven HVAC fault diagnosis performance," Applied Energy, Elsevier, vol. 356(C).
    16. Huang, Tian-en & Guo, Qinglai & Sun, Hongbin & Tan, Chin-Woo & Hu, Tianyu, 2019. "A deep spatial-temporal data-driven approach considering microclimates for power system security assessment," Applied Energy, Elsevier, vol. 237(C), pages 36-48.
    17. Simon P. Melgaard & Kamilla H. Andersen & Anna Marszal-Pomianowska & Rasmus L. Jensen & Per K. Heiselberg, 2022. "Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic Review," Energies, MDPI, vol. 15(12), pages 1-50, June.
    18. Hwang, Jun Kwon & Yun, Geun Young & Lee, Sukho & Seo, Hyeongjoon & Santamouris, Mat, 2020. "Using deep learning approaches with variable selection process to predict the energy performance of a heating and cooling system," Renewable Energy, Elsevier, vol. 149(C), pages 1227-1245.
    19. Zhang, Liang & Leach, Matt & Chen, Jianli & Hu, Yuqing, 2023. "Sensor cost-effectiveness analysis for data-driven fault detection and diagnostics in commercial buildings," Energy, Elsevier, vol. 263(PB).
    20. Qunli Wu & Hongjie Zhang, 2019. "A Novel Expertise-Guided Machine Learning Model for Internal Fault State Diagnosis of Power Transformers," Sustainability, MDPI, vol. 11(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7105-:d:1260677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.