IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6719-d1243788.html
   My bibliography  Save this article

Power Output Enhancement of Straight-Bladed Vertical-Axis Wind Turbines with Surrounding Structures

Author

Listed:
  • Koichi Watanabe

    (Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580, Japan)

  • Megumi Matsumoto

    (Department of Aeronautics and Astronautics, Kyushu University, Fukuoka 819-0395, Japan)

  • Thandar Nwe

    (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Yuji Ohya

    (Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580, Japan)

  • Takashi Karasudani

    (Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580, Japan)

  • Takanori Uchida

    (Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580, Japan)

Abstract

Wind tunnel experiments were conducted by installing wind-acceleration structures on both sides of a straight-bladed vertical-axis wind turbine (VAWT) to improve the output performance of the turbine. In the case of Venturi-shape structures, a curved shape with a large outlet opening produced a higher power output than straight or brimmed Venturi shapes. More importantly, two simple flat plates installed upstream of the wind turbine achieved the highest power enhancement of 2.4 times the power of the bare wind turbine. From the analysis of the flow visualization results, the power enhancement was attributed to the increase in lift force on the blades in the upstream region due to the acceleration of the gap flow between the flat plates, and the decrease in drag force on the blades toward the upstream region due to stagnation of the flow behind the plates.

Suggested Citation

  • Koichi Watanabe & Megumi Matsumoto & Thandar Nwe & Yuji Ohya & Takashi Karasudani & Takanori Uchida, 2023. "Power Output Enhancement of Straight-Bladed Vertical-Axis Wind Turbines with Surrounding Structures," Energies, MDPI, vol. 16(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6719-:d:1243788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6719/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6719/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed, M.H. & Janiga, G. & Pap, E. & Thévenin, D., 2010. "Optimization of Savonius turbines using an obstacle shielding the returning blade," Renewable Energy, Elsevier, vol. 35(11), pages 2618-2626.
    2. Koichi Watanabe & Shuhei Takahashi & Yuji Ohya, 2016. "Application of a Diffuser Structure to Vertical-Axis Wind Turbines," Energies, MDPI, vol. 9(6), pages 1-14, May.
    3. Koichi Watanabe & Yuji Ohya, 2021. "A Simple Theory and Performance Prediction for a Shrouded Wind Turbine with a Brimmed Diffuser," Energies, MDPI, vol. 14(12), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco A. Moreno-Armendáriz & Eddy Ibarra-Ontiveros & Hiram Calvo & Carlos A. Duchanoy, 2021. "Integrated Surrogate Optimization of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 15(1), pages 1-21, December.
    2. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    3. Hesami, Ali & Nikseresht, Amir H., 2023. "Towards development and optimization of the Savonius wind turbine incorporated with a wind-lens," Energy, Elsevier, vol. 274(C).
    4. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    5. Mohamed, M.H., 2014. "Aero-acoustics noise evaluation of H-rotor Darrieus wind turbines," Energy, Elsevier, vol. 65(C), pages 596-604.
    6. Oscar Garcia & Alain Ulazia & Mario del Rio & Sheila Carreno-Madinabeitia & Andoni Gonzalez-Arceo, 2019. "An Energy Potential Estimation Methodology and Novel Prototype Design for Building-Integrated Wind Turbines," Energies, MDPI, vol. 12(10), pages 1-21, May.
    7. Salleh, Mohd Badrul & Kamaruddin, Noorfazreena M. & Mohamed-Kassim, Zulfaa, 2022. "Experimental investigation on the effects of deflector angles on the power performance of a Savonius turbine for hydrokinetic applications in small rivers," Energy, Elsevier, vol. 247(C).
    8. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    9. Mohamed, M.H. & Shaaban, S., 2013. "Optimization of blade pitch angle of an axial turbine used for wave energy conversion," Energy, Elsevier, vol. 56(C), pages 229-239.
    10. Ghazalla, R.A. & Mohamed, M.H. & Hafiz, A.A., 2019. "Synergistic analysis of a Darrieus wind turbine using computational fluid dynamics," Energy, Elsevier, vol. 189(C).
    11. Mohammadi, M. & Mohammadi, R. & Ramadan, A. & Mohamed, M.H., 2018. "Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization," Energy, Elsevier, vol. 158(C), pages 592-606.
    12. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    13. Driss, Zied & Mlayeh, Olfa & Driss, Slah & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2015. "Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors," Energy, Elsevier, vol. 89(C), pages 708-729.
    14. Luke Sakamoto & Tomohiro Fukui & Koji Morinishi, 2022. "Blade Dimension Optimization and Performance Analysis of the 2-D Ugrinsky Wind Turbine," Energies, MDPI, vol. 15(7), pages 1-14, March.
    15. Hidetaka Senga & Hiroki Umemoto & Hiromichi Akimoto, 2022. "Verification of Tilt Effect on the Performance and Wake of a Vertical Axis Wind Turbine by Lifting Line Theory Simulation," Energies, MDPI, vol. 15(19), pages 1-17, September.
    16. Wu, Kuo-Tsai & Lo, Kuo-Hao & Kao, Ruey-Chy & Hwang, Sheng-Jye, 2023. "Design and performance analysis of a passive rotatable deflector diversion tail for tidal current power generation hydrokinetic turbines," Energy, Elsevier, vol. 283(C).
    17. Deda Altan, Burcin & Altan, Gurkan & Kovan, Volkan, 2016. "Investigation of 3D printed Savonius rotor performance," Renewable Energy, Elsevier, vol. 99(C), pages 584-591.
    18. Montelpare, Sergio & D'Alessandro, Valerio & Zoppi, Andrea & Ricci, Renato, 2018. "Experimental study on a modified Savonius wind rotor for street lighting systems. Analysis of external appendages and elements," Energy, Elsevier, vol. 144(C), pages 146-158.
    19. Pinheiro, E. & Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2019. "Performance analysis of wind generators and PV systems in industrial small-scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 392-401.
    20. Mohamed, M.H., 2013. "Impacts of solidity and hybrid system in small wind turbines performance," Energy, Elsevier, vol. 57(C), pages 495-504.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6719-:d:1243788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.