IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6684-d1242347.html
   My bibliography  Save this article

Power Quality Enhancement of Remote Gas Field Generations with Smart Power Converters

Author

Listed:
  • Wenze Li

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada)

  • Rui Liu

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada)

  • Yunwei Li

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada)

Abstract

Direct power generation near gas fields offers numerous benefits, including optimized economic efficiency and reduced environmental impact. Moreover, building on-site greenhouses emerges as a promising approach to further minimize carbon emissions and residual heat, greatly promoting resource utilization. However, such power plants generally have access to a weak grid due to their remote locations, and they also contain nonlinear local loads, such as the grow lights in the greenhouses. Consequently, the generation system is susceptible to power quality issues, manifested in overvoltage and harmonics. To address these issues, a smart back-to-back converter is employed to interconnect the gas turbine generator and the utility grid. This smart converter not only enhances power quality but also offers potential ancillary services that contribute to the dynamics of the gas generation system, such as damping low-frequency oscillation among parallel-connected generators. In this paper, three control configurations for the back-to-back converter are developed, enabling the coordinated regulation of exported active power, AC voltage, and DC-link voltage in either a grid-following or grid-forming manner. Furthermore, comparative studies are conducted to provide guidelines for selecting an appropriate control strategy that ensures stable operation under various short circuit ratios. A practical gas cogeneration system is chosen to evaluate the performance of the back-to-back converter, and real-time simulations based on RT-LAB are carried out to validate the effectiveness of the methodology.

Suggested Citation

  • Wenze Li & Rui Liu & Yunwei Li, 2023. "Power Quality Enhancement of Remote Gas Field Generations with Smart Power Converters," Energies, MDPI, vol. 16(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6684-:d:1242347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6684/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6684/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayumu Tokiwa & Hiroaki Yamada & Toshihiko Tanaka & Makoto Watanabe & Masanao Shirai & Yuji Teranishi, 2017. "New Hybrid Static VAR Compensator with Series Active Filter," Energies, MDPI, vol. 10(10), pages 1-14, October.
    2. Cai, Hao & Burnham, Andrew & Chen, Rui & Wang, Michael, 2017. "Wells to wheels: Environmental implications of natural gas as a transportation fuel," Energy Policy, Elsevier, vol. 109(C), pages 565-578.
    3. Oksana Marinina & Anna Nechitailo & Gennady Stroykov & Anna Tsvetkova & Ekaterina Reshneva & Liudmila Turovskaya, 2023. "Technical and Economic Assessment of Energy Efficiency of Electrification of Hydrocarbon Production Facilities in Underdeveloped Areas," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Yujiang Zhang & Yining Wang & Bingyuan Cui & Guorui Feng & Shuai Zhang & Chunwang Zhang & Zhengjun Zhang, 2023. "A Disturbed Voussoir Beam Structure Mechanical Model and Its Application in Feasibility Determination of Upward Mining," Energies, MDPI, vol. 16(20), pages 1-18, October.
    3. Adrian Pană & Alexandru Băloi & Florin Molnar-Matei, 2018. "Iterative Method for Determining the Values of the Susceptances of a Balancing Capacitive Compensator," Energies, MDPI, vol. 11(10), pages 1-18, October.
    4. Elham Ziar & Mehdi Seifbarghy & Mahdi Bashiri & Benny Tjahjono, 2023. "An efficient environmentally friendly transportation network design via dry ports: a bi-level programming approach," Annals of Operations Research, Springer, vol. 322(2), pages 1143-1166, March.
    5. Tatyana Kukharova & Alexander Martirosyan & Mir-Amal Asadulagi & Yury Ilyushin, 2024. "Development of the Separation Column’s Temperature Field Monitoring System," Energies, MDPI, vol. 17(20), pages 1-23, October.
    6. Marina A. Nevskaya & Semen M. Raikhlin & Amina F. Chanysheva, 2024. "Assessment of Energy Efficiency Projects at Russian Mining Enterprises within the Framework of Sustainable Development," Sustainability, MDPI, vol. 16(17), pages 1-20, August.
    7. Adrian Pană & Alexandru Băloi & Florin Molnar-Matei, 2018. "From the Balancing Reactive Compensator to the Balancing Capacitive Compensator," Energies, MDPI, vol. 11(8), pages 1-24, July.
    8. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    9. Carlo Cunanan & Manh-Kien Tran & Youngwoo Lee & Shinghei Kwok & Vincent Leung & Michael Fowler, 2021. "A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles," Clean Technol., MDPI, vol. 3(2), pages 1-16, June.
    10. Minh Phuong Nguyen & Tatiana Ponomarenko & Nga Nguyen, 2024. "Energy Transition in Vietnam: A Strategic Analysis and Forecast," Sustainability, MDPI, vol. 16(5), pages 1-20, February.
    11. Leonardo Rodrigues Limongi & Fabricio Bradaschia & Calebe Hermann de Oliveira Lima & Marcelo Cabral Cavalcanti, 2018. "Reactive Power and Current Harmonic Control Using a Dual Hybrid Power Filter for Unbalanced Non-Linear Loads," Energies, MDPI, vol. 11(6), pages 1-19, May.
    12. Ravigné, E. & Da Costa, P., 2021. "Economic and environmental performances of natural gas for heavy trucks: A case study on the French automotive industry supply chain," Energy Policy, Elsevier, vol. 149(C).
    13. Stettler, Marc E.J. & Woo, Mino & Ainalis, Daniel & Achurra-Gonzalez, Pablo & Speirs, Jamie & Cooper, Jasmin & Lim, Dong-Ha & Brandon, Nigel & Hawkes, Adam, 2023. "Review of Well-to-Wheel lifecycle emissions of liquefied natural gas heavy goods vehicles," Applied Energy, Elsevier, vol. 333(C).
    14. Pedro G. Machado & Ana C. R. Teixeira & Flavia M. A. Collaço & Dominique Mouette, 2021. "Review of life cycle greenhouse gases, air pollutant emissions and costs of road medium and heavy‐duty trucks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    15. Langshaw, Liam & Ainalis, Daniel & Acha, Salvador & Shah, Nilay & Stettler, Marc E.J., 2020. "Environmental and economic analysis of liquefied natural gas (LNG) for heavy goods vehicles in the UK: A Well-to-Wheel and total cost of ownership evaluation," Energy Policy, Elsevier, vol. 137(C).
    16. Tatyana Semenova & Juan Yair Martínez Santoyo, 2024. "Increasing the Sustainability of the Strategic Development of Oil Producing Companies in Mexico," Resources, MDPI, vol. 13(8), pages 1-37, August.
    17. Shawky Ismail, M. & Etman, Omar A. & Elhelw, Mohamed & Attia, Abdelhamid, 2023. "Decarbonization and enhancement of LNG cascade cycle by optimizing the heat rejection system, hourly evaluation," Energy, Elsevier, vol. 280(C).
    18. Yury Valeryevich Ilyushin & Ekaterina Ivanovna Kapostey, 2023. "Developing a Comprehensive Mathematical Model for Aluminium Production in a Soderberg Electrolyser," Energies, MDPI, vol. 16(17), pages 1-28, August.
    19. Jin Yan & Kejiang Lei & Yuangang Jiang & Minbo Zhang & Weizhong Zhang & Hao Yin, 2023. "Optimization of Accurate Spacing for Gas Extraction from Damaged Coal Seams Based on a Dual-Penetration Model," Sustainability, MDPI, vol. 15(21), pages 1-23, October.
    20. Li, Menghan & Wu, Hanming & Liu, Xiaori & Wei, Zhangning & Tian, Hongjian & Zhang, Qiang & Li, Zhenguo, 2021. "Numerical investigations on pilot ignited high pressure direct injection natural gas engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6684-:d:1242347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.