IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6655-d1241451.html
   My bibliography  Save this article

LESS Spark Ignition Engine: An Innovative Alternative to the Crankshaft Mechanism

Author

Listed:
  • Vasileios Georgitzikis

    (G-Drill/LESS Engineering, Thessalonikis 30, Agios Ioannis Rentis, GR-18233 Pireaus, Greece)

  • Dionisis Pettas

    (FEAC Engineering P.C., GR-26442 Patras, Greece)

  • Konstantinos Loukas

    (FEAC Engineering P.C., GR-26442 Patras, Greece)

  • Georgios Mavropoulos

    (Department of Mechanical Engineering Educators, School of Pedagogical and Technological Education (ASPETE), GR-15122 Marousi, Greece)

Abstract

In recent years, the internal combustion engine has been the subject of debate mainly concerning its environmental impact. Despite all the discussion it becomes clear day by day that combustion engines will continue to occupy their dominant role over the following decades, especially in the mid- and large-size power spectrum ranges and retain a large share of the market in the smaller-size segment of their application. In this context, in the present paper, a novel engine kinematic mechanism is introduced, which converts rotary to reciprocating motion, and aims to become a potential replacement for the traditional crankshaft mechanism of piston engines. Following a description of the fundamental principles of the new design, we detail the main problems with the application of the new design in the first prototype SI engine and the actions and improvements implemented to overcome them. The actual measurement data from basic engine performance parameters are provided and evaluated, leading to conclusions and decisions for further action which should be implemented in the next improvement steps. Overall, the new SI engine, implementing the novel kinematic mechanism, seems to be quite promising especially in hybrid automotive applications, a fact that encourages the implementation of further improvement plans.

Suggested Citation

  • Vasileios Georgitzikis & Dionisis Pettas & Konstantinos Loukas & Georgios Mavropoulos, 2023. "LESS Spark Ignition Engine: An Innovative Alternative to the Crankshaft Mechanism," Energies, MDPI, vol. 16(18), pages 1-36, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6655-:d:1241451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6655/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6655/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dhani Avianto Sugeng & Ahmad Muhsin Ithnin & Wira Jazair Yahya & Hasannuddin Abd Kadir, 2020. "Emulsifier-Free Water-in-Biodiesel Emulsion Fuel via Steam Emulsification: Its Physical Properties, Combustion Performance, and Exhaust Emission," Energies, MDPI, vol. 13(20), pages 1-20, October.
    2. Andersson, Öivind & Börjesson, Pål, 2021. "The greenhouse gas emissions of an electrified vehicle combined with renewable fuels: Life cycle assessment and policy implications," Applied Energy, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    2. Ruslans Smigins & Kristaps Sondors & Vilnis Pirs & Ilmars Dukulis & Gints Birzietis, 2023. "Studies of Engine Performance and Emissions at Full-Load Mode Using HVO, Diesel Fuel, and HVO5," Energies, MDPI, vol. 16(12), pages 1-14, June.
    3. Jan Verhaegh & Frank Kupper & Frank Willems, 2022. "Data-Driven Air-Fuel Path Control Design for Robust RCCI Engine Operation," Energies, MDPI, vol. 15(6), pages 1-25, March.
    4. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    5. José Alberto Fuinhas & Matheus Koengkan & Nuno Carlos Leitão & Chinazaekpere Nwani & Gizem Uzuner & Fatemeh Dehdar & Stefania Relva & Drielli Peyerl, 2021. "Effect of Battery Electric Vehicles on Greenhouse Gas Emissions in 29 European Union Countries," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    6. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    7. Buberger, Johannes & Kersten, Anton & Kuder, Manuel & Eckerle, Richard & Weyh, Thomas & Thiringer, Torbjörn, 2022. "Total CO2-equivalent life-cycle emissions from commercially available passenger cars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Yin, WanJun & Qin, Xuan, 2022. "Cooperative optimization strategy for large-scale electric vehicle charging and discharging," Energy, Elsevier, vol. 258(C).
    9. Shi, Lei & Wu, Rongxin & Lin, Boqiang, 2023. "Where will go for electric vehicles in China after the government subsidy incentives are abolished? A controversial consumer perspective," Energy, Elsevier, vol. 262(PA).
    10. Robin Smit & Daniel William Kennedy, 2022. "Greenhouse Gas Emissions Performance of Electric and Fossil-Fueled Passenger Vehicles with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment," Sustainability, MDPI, vol. 14(6), pages 1-29, March.
    11. Yaning Zhang & Ziqiang Cao & Chunmei Zhang & Yisong Chen, 2024. "Life Cycle Assessment of Plug-In Hybrid Electric Vehicles Considering Different Vehicle Working Conditions and Battery Degradation Scenarios," Energies, MDPI, vol. 17(17), pages 1-29, August.
    12. Dmitrii V. Antonov & Roman M. Fedorenko & Pavel A. Strizhak, 2022. "Micro-Explosion Phenomenon: Conditions and Benefits," Energies, MDPI, vol. 15(20), pages 1-19, October.
    13. Tobias Frambach & Ralf Kleisch & Ralf Liedtke & Jochen Schwarzer & Egbert Figgemeier, 2022. "Environmental Impact Assessment and Classification of 48 V Plug-in Hybrids with Real-Driving Use Case Simulations," Energies, MDPI, vol. 15(7), pages 1-21, March.
    14. Beatrice, C. & Capasso, C. & Doulgeris, S. & Samaras, Z. & Veneri, O., 2024. "Hybrid storage system management for hybrid electric vehicles under real operating conditions," Applied Energy, Elsevier, vol. 354(PB).
    15. Yang, Chen, 2022. "Running battery electric vehicles with extended range: Coupling cost and energy analysis," Applied Energy, Elsevier, vol. 306(PB).
    16. van den Oever, A.E.M. & Costa, D. & Messagie, M., 2023. "Prospective life cycle assessment of alternatively fueled heavy-duty trucks," Applied Energy, Elsevier, vol. 336(C).
    17. Emad Kazemzadeh & Matheus Koengkan & José Alberto Fuinhas, 2022. "Effect of Battery-Electric and Plug-In Hybrid Electric Vehicles on PM2.5 Emissions in 29 European Countries," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    18. Ullah, Sami & Niu, Ben & Meo, Muhammad Saeed, 2024. "Digital inclusion and environmental taxes: A dynamic duo for energy transition in green economies," Applied Energy, Elsevier, vol. 361(C).
    19. Srivastava, Vivek & Schaub, Joschka & Pischinger, Stefan, 2023. "Model-based closed-loop control strategies for flex-fuel capability," Applied Energy, Elsevier, vol. 350(C).
    20. Ioana-Cristina Badea & Beatrice-Adriana Șerban & Ioana Anasiei & Dumitru Mitrică & Mihai Tudor Olaru & Andrey Rabin & Mariana Ciurdaș, 2023. "The Energy Storage Technology Revolution to Achieve Climate Neutrality," Energies, MDPI, vol. 17(1), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6655-:d:1241451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.