IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6353-d1231256.html
   My bibliography  Save this article

Detection of Stealthy False Data Injection Attacks in Modular Multilevel Converters

Author

Listed:
  • Xingxing Chen

    (Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China)

  • Shuguang Song

    (College of New Energy, China University of Petroleum (East China), Qingdao 266580, China)

Abstract

A modular multilevel converter (MMC) in a high-voltage direct-current (HVDC) transmission system consists of an electric-coupled physical system and a communication-coupled cyber system, leading to a cyber-physical system (CPS). Such a CPS is vulnerable to false data injection attacks (FDIA), which are the main category of cyberattacks. FDIAs can be launched by injecting false data into the control or communication system of the MMC to change the submodule (SM) capacitor voltage seen by the central controller. Consequently, the capacitor voltage of the attacked SM will deviate from its normal value and thus threaten the safe operation of the converter. Stealthy FDIAs characterized by elaborated attack sequences are more dangerous because they can deceive and bypass the attack detector presented in the existing literature for the MMC. To address this issue, this paper proposes a stealthy FDIA detection method to obtain the real SM capacitor voltages. Thus, the attacked SM can be located by comparing its real capacitor voltage with prespecified thresholds. Simulation results validate the effectiveness of the proposed detection and protection strategies.

Suggested Citation

  • Xingxing Chen & Shuguang Song, 2023. "Detection of Stealthy False Data Injection Attacks in Modular Multilevel Converters," Energies, MDPI, vol. 16(17), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6353-:d:1231256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6353/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6353/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guanyuan Cheng & Shaojian Song, 2023. "Fault Detection and Identification in MMCs Based on DSCNNs," Energies, MDPI, vol. 16(8), pages 1-17, April.
    2. Yumeng Tian & Harith R. Wickramasinghe & Zixin Li & Josep Pou & Georgios Konstantinou, 2022. "Review, Classification and Loss Comparison of Modular Multilevel Converter Submodules for HVDC Applications," Energies, MDPI, vol. 15(6), pages 1-32, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdulkarim Athwer & Ahmed Darwish, 2023. "A Review on Modular Converter Topologies Based on WBG Semiconductor Devices in Wind Energy Conversion Systems," Energies, MDPI, vol. 16(14), pages 1-44, July.
    2. Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
    3. Dileep Kumar & Wajiha Shireen & Nanik Ram, 2024. "Grid Integration of Offshore Wind Energy: A Review on Fault Ride Through Techniques for MMC-HVDC Systems," Energies, MDPI, vol. 17(21), pages 1-25, October.
    4. Hongjin Hu & Haoze Wang & Kun Liu & Jingbo Wei & Xiangjie Shen, 2022. "A Simplified Space Vector Pulse Width Modulation Algorithm of a High-Speed Permanent Magnet Synchronous Machine Drive for a Flywheel Energy Storage System," Energies, MDPI, vol. 15(11), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6353-:d:1231256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.