IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p6071-d1220734.html
   My bibliography  Save this article

A Reliability-Optimized Maximum Power Point Tracking Algorithm Utilizing Neural Networks for Long-Term Lifetime Prediction for Photovoltaic Power Converters

Author

Listed:
  • Mahmoud Shahbazi

    (Department of Engineering, Durham University, Durham DH1 3LE, UK)

  • Niall Andrew Smith

    (Department of Engineering, Durham University, Durham DH1 3LE, UK)

  • Mousa Marzband

    (Net Zero Industry Innovation Centre, Teesside University, Middlesbrough TS1 3BA, UK)

  • Habib Ur Rahman Habib

    (Department of Engineering, Durham University, Durham DH1 3LE, UK)

Abstract

The reliability of power converters in photovoltaic systems is critical to the overall system reliability. This paper proposes a novel active thermal-controlled algorithm that aims to reduce the rate of junction temperature increase, therefore, increasing the reliability of the device. The algorithm works alongside a normal perturb and observe maximum power point tracking algorithm, taking control when certain temperature criteria are met. In conjunction with a neural network, the algorithm is applied to long-term real mission profile data. This would grant a better understanding of the real-world trade-offs between energy generated and lifetime improvement when using the proposed algorithm, as well as shortening study cycle times. The neural network, when applied to 365 days of data, was 28 times faster than using standard electrothermal modeling, and the lifetime consumption was predicted with greater than 96.5% accuracy. Energy generated was predicted with greater than 99.5% accuracy. The proposed algorithm resulted in a 3.3% reduction in lifetime consumption with a 1.0% reduction in the total energy generated. There is a demonstrated trade-off between lifetime consumption reduction and energy-generated reduction. The results are also split by environmental conditions. Under very variable conditions, the algorithm resulted in a 4.4% reduction in lifetime consumption with a 1.4% reduction in the total energy generated.

Suggested Citation

  • Mahmoud Shahbazi & Niall Andrew Smith & Mousa Marzband & Habib Ur Rahman Habib, 2023. "A Reliability-Optimized Maximum Power Point Tracking Algorithm Utilizing Neural Networks for Long-Term Lifetime Prediction for Photovoltaic Power Converters," Energies, MDPI, vol. 16(16), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:6071-:d:1220734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/6071/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/6071/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaviria, Jorge Felipe & Narváez, Gabriel & Guillen, Camilo & Giraldo, Luis Felipe & Bressan, Michael, 2022. "Machine learning in photovoltaic systems: A review," Renewable Energy, Elsevier, vol. 196(C), pages 298-318.
    2. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    3. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    2. Jen Chun Wang & Kuo-Tsang Huang & Meng Yun Ko, 2019. "Using the Fuzzy Delphi Method to Study the Construction Needs of an Elementary Campus and Achieve Sustainability," Sustainability, MDPI, vol. 11(23), pages 1-13, December.
    3. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    4. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    5. Nima Mirzaei, 2022. "A Multicriteria Decision Framework for Solar Power Plant Location Selection Problem with Pythagorean Fuzzy Data: A Case Study on Green Energy in Turkey," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    6. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    7. Kara Mostefa Khelil, Chérifa & Amrouche, Badia & Benyoucef, Abou soufiane & Kara, Kamel & Chouder, Aissa, 2020. "New Intelligent Fault Diagnosis (IFD) approach for grid-connected photovoltaic systems," Energy, Elsevier, vol. 211(C).
    8. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    9. Patrick Sunday Onen & Geev Mokryani & Rana H. A. Zubo, 2022. "Planning of Multi-Vector Energy Systems with High Penetration of Renewable Energy Source: A Comprehensive Review," Energies, MDPI, vol. 15(15), pages 1-25, August.
    10. Harrou, Fouzi & Sun, Ying & Taghezouit, Bilal & Saidi, Ahmed & Hamlati, Mohamed-Elkarim, 2018. "Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches," Renewable Energy, Elsevier, vol. 116(PA), pages 22-37.
    11. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    12. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.
    13. Kumar, Rajesh & Agarwala, Arun, 2016. "Renewable energy technology diffusion model for techno-economics feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1515-1524.
    14. Dhimish, Mahmoud & Holmes, Violeta & Mehrdadi, Bruce & Dales, Mark & Mather, Peter, 2017. "Photovoltaic fault detection algorithm based on theoretical curves modelling and fuzzy classification system," Energy, Elsevier, vol. 140(P1), pages 276-290.
    15. Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
    16. Nie, S. & Huang, Charley Z. & Huang, G.H. & Li, Y.P. & Chen, J.P. & Fan, Y.R. & Cheng, G.H., 2016. "Planning renewable energy in electric power system for sustainable development under uncertainty – A case study of Beijing," Applied Energy, Elsevier, vol. 162(C), pages 772-786.
    17. Karunathilake, Hirushie & Hewage, Kasun & Prabatha, Tharindu & Ruparathna, Rajeev & Sadiq, Rehan, 2020. "Project deployment strategies for community renewable energy: A dynamic multi-period planning approach," Renewable Energy, Elsevier, vol. 152(C), pages 237-258.
    18. Zhang, Kai & Li, Jingzhi & He, Zhubin & Yan, Wanfeng, 2018. "Microgrid energy dispatching for industrial zones with renewable generations and electric vehicles via stochastic optimization and learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 356-369.
    19. Yujia Ge & Yurong Nan & Lijun Bai, 2019. "A Hybrid Prediction Model for Solar Radiation Based on Long Short-Term Memory, Empirical Mode Decomposition, and Solar Profiles for Energy Harvesting Wireless Sensor Networks," Energies, MDPI, vol. 12(24), pages 1-21, December.
    20. Athanasios Kolios & Varvara Mytilinou & Estivaliz Lozano-Minguez & Konstantinos Salonitis, 2016. "A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs," Energies, MDPI, vol. 9(7), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:6071-:d:1220734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.