IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5981-d1217571.html
   My bibliography  Save this article

Silica Nanoparticle Formation from Supercritical Geothermal Sources

Author

Listed:
  • Silje Bordvik

    (Department of Energy and Process Technology, Norwegian University of Science and Technology, 7034 Trondheim, Norway)

  • Erling Næss

    (Department of Energy and Process Technology, Norwegian University of Science and Technology, 7034 Trondheim, Norway)

Abstract

Silica precipitation from high-enthalpy, depressurized supercritical fluids is investigated to determine the best method for accessing the scaling potential as a function of time, position and fluid composition. The most relevant knowledge application is for geothermal sources where the wells are drilled closed to magma and the temperature gradients in the rock are very high. The power potential per well for such a system is large compared to conventional geothermal power production, but several knowledge gaps, among them mineral precipitation from produced fluids, limit commercial use. For the high-enthalpy supercritical well fluid used as a base case in this review, conventional methods for reducing the silica content before it enters a turbine limit the power output. Knowledge of the particle-number density, size and time scales of growth in different depressurization scenarios, along with the silica solubility, kinetics and morphology, is essential to handle deposits and avoid scaling in inconvenient parts of the power plant. Experimental data on the precipitation of silica from highly supersaturated superheated steam are scarce, and it is known that the kinetics of precipitation in steam differ from those of liquid water. We argue that to quantify the number of solids in the depressurized supercritical fluid and superheated steam, dividing the process into three separate but dependable mathematical steps is a reliable approach: (1) the nucleation of nanocolloids, (2) growth by agglomeration, and (3) deposition onto a surface.

Suggested Citation

  • Silje Bordvik & Erling Næss, 2023. "Silica Nanoparticle Formation from Supercritical Geothermal Sources," Energies, MDPI, vol. 16(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5981-:d:1217571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5981/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5981/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Wang & Tianfu Xu & Yuxiang Cheng & Guanhong Feng, 2022. "Prospects for Power Generation of the Doublet Supercritical Geothermal System in Reykjanes Geothermal Field, Iceland," Energies, MDPI, vol. 15(22), pages 1-15, November.
    2. Feng, Guanhong & Wang, Yu & Xu, Tianfu & Wang, Fugang & Shi, Yan, 2021. "Multiphase flow modeling and energy extraction performance for supercritical geothermal systems," Renewable Energy, Elsevier, vol. 173(C), pages 442-454.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Wang & Tianfu Xu & Yuxiang Cheng & Guanhong Feng, 2022. "Prospects for Power Generation of the Doublet Supercritical Geothermal System in Reykjanes Geothermal Field, Iceland," Energies, MDPI, vol. 15(22), pages 1-15, November.
    2. Feng, Guanhong & Xu, Tianfu & Zhao, Yue'an & Gherardi, Fabrizio, 2022. "Heat mining from super-hot horizons of the Larderello geothermal field, Italy," Renewable Energy, Elsevier, vol. 197(C), pages 371-383.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5981-:d:1217571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.