IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2915-d252700.html
   My bibliography  Save this article

Power Curve-Fitting Control Method with Temperature Compensation and Fast-Response for All-Metal Domestic Induction Heating Systems

Author

Listed:
  • Sang Min Park

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Eunsu Jang

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Dongmyoung Joo

    (Intelligent Mechatronics Research Center, Korea Electronics Technology Institute (KETI), Bucheon 14502, Korea)

  • Byoung Kuk Lee

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

Abstract

Typical domestic induction cooktops can only heat ferromagnetic pots/vessels. However, to increase the availability and marketability of induction heating (IH) cooktop products, heating techniques for all types of metallic pots (i.e., created from metals such as aluminum, copper, and stainless steel) are required. To satisfy the requirements of induction cooktops, this paper proposes the design of an all-metal domestic IH system that can heat any type of metallic pot while considering the temperature variation of the working-coil. A control algorithm using a power curve-fitting method (CFM) is presented to quickly respond to load parameter variations in the IH. In addition, the CFM control algorithm is established to compensate for the power reference value by reflecting the increase in the working-coil temperature during the heating of the non-ferromagnetic pot. To evaluate the performance of the proposed system, the control algorithm strategy and experimental results based on a 3.2 kW all-metal IH cooktop are presented.

Suggested Citation

  • Sang Min Park & Eunsu Jang & Dongmyoung Joo & Byoung Kuk Lee, 2019. "Power Curve-Fitting Control Method with Temperature Compensation and Fast-Response for All-Metal Domestic Induction Heating Systems," Energies, MDPI, vol. 12(15), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2915-:d:252700
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2915/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pradeep Vishnuram & Gunabalan Ramachandiran & Thanikanti Sudhakar Babu & Benedetto Nastasi, 2021. "Induction Heating in Domestic Cooking and Industrial Melting Applications: A Systematic Review on Modelling, Converter Topologies and Control Schemes," Energies, MDPI, vol. 14(20), pages 1-34, October.
    2. Zheng-Feng Li & Jhih-Cheng Hu & Ming-Shi Huang & Yi-Liang Lin & Chun-Wei Lin & Yu-Min Meng, 2022. "Load Estimation for Induction Heating Cookers Based on Series RLC Natural Resonant Current," Energies, MDPI, vol. 15(4), pages 1-19, February.
    3. Pradeep Vishnuram & Suchitra Dayalan & Sudhakar Babu Thanikanti & Karthik Balasubramanian & Benedetto Nastasi, 2021. "Single Source Multi-Frequency AC-AC Converter for Induction Cooking Applications," Energies, MDPI, vol. 14(16), pages 1-21, August.
    4. Senthil Rajan Ramalingam & C. S. Boopthi & Sridhar Ramasamy & Mominul Ahsan & Julfikar Haider, 2021. "Induction Heating for Variably Sized Ferrous and Non-Ferrous Materials through Load Modulation," Energies, MDPI, vol. 14(24), pages 1-18, December.
    5. Raphael Gergely & Christoph Hochenauer, 2023. "Heating Strategies for Efficient Combined Inductive and Convective Heating of Profiles," Energies, MDPI, vol. 16(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2915-:d:252700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.