IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5712-d1207025.html
   My bibliography  Save this article

A New Golden Eagle Optimization with Stooping Behaviour for Photovoltaic Maximum Power Tracking under Partial Shading

Author

Listed:
  • Zhi-Kai Fan

    (Department of Electrical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd., Taipei City 106, Taiwan)

  • Kuo-Lung Lian

    (Department of Electrical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd., Taipei City 106, Taiwan)

  • Jia-Fu Lin

    (Taiwan Power Company, No. 242, Section 3, Roosevelt Rd., Zhongzheng District, Taipei City 100208, Taiwan)

Abstract

Solar photovoltaic (PV) systems often encounter a problem called partial shading condition (PSC), which causes a significant decrease in the system’s output power. To address this issue, meta-heuristic algorithms (MHAs) can be used to perform maximum power point tracking (MPPT) on the system’s multiple-peak P-V curves due to PSCs. Particle swarm optimization was one of the first MHA methods to be implemented for MPPT. However, PSO has some drawbacks, including long settling time and sustained PV output power oscillations during tracking. Hence, some improved MHA methods have been proposed. One approach is to combine a MHA with a deterministic approach (DA) such as P & O method. However, such a hybrid method is more complex to implement. Also, the transition criteria from a DA to a MHA and vice versa is sometimes difficult to define. Another approach, as adapted in this paper is to modify the existing MHAs. This includes modifying the search operators or the parameter settings, to enhance exploration or exploitation capabilities of MHAs. This paper proposed to incorporate the stooping behaviour in the golden eagle optimization (GEO) algorithm. Stooping is in fact a hunting technique frequently employed by golden eagles. Inclusion of stooping in the GEO algorithm not only truly model golden eagles’ hunting behaviour but also yields great performance. Stooping behavior only requires one extra parameter. Nevertheless, on average, the proposed method can reduce tracking time by 42.41 % and improve dynamic tracking accuracy by 1.95 % , compared to GEO. Moreover, compared to PSO, GWO, and BA, the proposed method achieves an improvement of 2.66 % , 3.56 % , and 4.24 % in dynamic tracking accuracy, respectively.

Suggested Citation

  • Zhi-Kai Fan & Kuo-Lung Lian & Jia-Fu Lin, 2023. "A New Golden Eagle Optimization with Stooping Behaviour for Photovoltaic Maximum Power Tracking under Partial Shading," Energies, MDPI, vol. 16(15), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5712-:d:1207025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5712/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5712/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali M. Eltamaly & Hassan M. H. Farh & Mamdooh S. Al Saud, 2019. "Impact of PSO Reinitialization on the Accuracy of Dynamic Global Maximum Power Detection of Variant Partially Shaded PV Systems," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    2. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    3. Ahmed, Jubaer & Salam, Zainal, 2014. "A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability," Applied Energy, Elsevier, vol. 119(C), pages 118-130.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Fahd A. Alturki & Abdullrahman A. Al-Shamma’a & Hassan M. H. Farh, 2020. "Simulations and dSPACE Real-Time Implementation of Photovoltaic Global Maximum Power Extraction under Partial Shading," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    3. Ali M. Eltamaly & M. S. Al-Saud & A. G. Abo-Khalil, 2020. "Performance Improvement of PV Systems’ Maximum Power Point Tracker Based on a Scanning PSO Particle Strategy," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    4. Adel O. Baatiah & Ali M. Eltamaly & Majed A. Alotaibi, 2023. "Improving Photovoltaic MPPT Performance through PSO Dynamic Swarm Size Reduction," Energies, MDPI, vol. 16(18), pages 1-15, September.
    5. Ahmed G. Abo-Khalil & Walied Alharbi & Abdel-Rahman Al-Qawasmi & Mohammad Alobaid & Ibrahim M. Alarifi, 2021. "Maximum Power Point Tracking of PV Systems under Partial Shading Conditions Based on Opposition-Based Learning Firefly Algorithm," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    6. Ali M. Eltamaly, 2021. "A Novel Strategy for Optimal PSO Control Parameters Determination for PV Energy Systems," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    7. Hassan M H Farh & Ali M Eltamaly & Mohd F Othman, 2018. "Hybrid PSO-FLC for dynamic global peak extraction of the partially shaded photovoltaic system," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-16, November.
    8. Ali M. Eltamaly & Hassan M. H. Farh & Mamdooh S. Al Saud, 2019. "Impact of PSO Reinitialization on the Accuracy of Dynamic Global Maximum Power Detection of Variant Partially Shaded PV Systems," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    9. Eltamaly, Ali M. & Al-Saud, M.S. & Abokhalil, Ahmed G. & Farh, Hassan M.H., 2020. "Simulation and experimental validation of fast adaptive particle swarm optimization strategy for photovoltaic global peak tracker under dynamic partial shading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    10. Ali M. Eltamaly, 2021. "An Improved Cuckoo Search Algorithm for Maximum Power Point Tracking of Photovoltaic Systems under Partial Shading Conditions," Energies, MDPI, vol. 14(4), pages 1-26, February.
    11. Ali M. Eltamaly & Zeyad A. Almutairi & Mohamed A. Abdelhamid, 2023. "Modern Optimization Algorithm for Improved Performance of Maximum Power Point Tracker of Partially Shaded PV Systems," Energies, MDPI, vol. 16(13), pages 1-22, July.
    12. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    13. Guo, Lei & Meng, Zhuo & Sun, Yize & Wang, Libiao, 2018. "A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition," Energy, Elsevier, vol. 144(C), pages 501-514.
    14. Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).
    15. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    16. Paula Andrea Ortiz Valencia & Carlos Andres Ramos-Paja, 2015. "Sliding-Mode Controller for Maximum Power Point Tracking in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 8(11), pages 1-25, November.
    17. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    18. Kamran Ali & Laiq Khan & Qudrat Khan & Shafaat Ullah & Saghir Ahmad & Sidra Mumtaz & Fazal Wahab Karam & Naghmash, 2019. "Robust Integral Backstepping Based Nonlinear MPPT Control for a PV System," Energies, MDPI, vol. 12(16), pages 1-20, August.
    19. Yılmaz, Mehmet & Kaleli, Alirıza & Çorapsız, Muhammed Fatih, 2023. "Machine learning based dynamic super twisting sliding mode controller for increase speed and accuracy of MPPT using real-time data under PSCs," Renewable Energy, Elsevier, vol. 219(P1).
    20. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5712-:d:1207025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.