IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5680-d1205279.html
   My bibliography  Save this article

Demand-Side Management and Its Impact on the Growing Circular Debt of Pakistan’s Energy Sector

Author

Listed:
  • Muhammad Azhar Hassan

    (Department of Electrical and Computer Engineering, Air University, Islamabad 44000, Pakistan)

  • Saad Ullah Khan

    (Department of Electrical and Computer Engineering, Air University, Islamabad 44000, Pakistan)

  • Muhammad Fahad Zia

    (Department of Electrical and Computer Engineering, American University in Dubai, Dubai 28200, United Arab Emirates)

  • Azka Sardar

    (Department of Electrical and Computer Engineering, Air University, Islamabad 44000, Pakistan)

  • Khawaja Khalid Mehmood

    (Department of Electrical Engineering, The University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan)

  • Fiaz Ahmad

    (Department of Electrical and Computer Engineering, Air University, Islamabad 44000, Pakistan)

Abstract

In this research, we propose an energy-management scheme for domestic users, which uses the load-shifting strategy of demand-side management (DSM). The research demonstrates that the energy sector’s circular debt problem from the viewpoint of a developing country can be solved by incorporating DSM. Circular debt is a chain reaction that arises when the balance between cost and energy supply collapses. Circular debt is an ongoing problem in Pakistan, where economic crises are continuously posing a threat to the energy sector. DSM is envisioned to address these concerns in a dynamic way thoroughly: introducing DSM can minimize circular debt, increase grid reliability, and smooth the supply–demand operation. Circular debt is directly linked with the subsidy offered by the government of Pakistan. As the cost of energy utilized by consumers increases, the subsidy also increases due to the direct link between the two entities. Therefore, the subsidy can be controlled by energy-consumption management with the adoption of DSM. This study addresses that by incorporating optimized cost solutions, circular debt can be regulated to improve the economy of the energy sector. A genetic algorithm is used as an optimization tool to manage demand and generate an optimal schedule under a dynamic electricity pricing signal. To support the utility, a solar system is used as a secondary energy source. Finally, the results show a curtailment in the payable costs at both the consumer and government ends, thus reducing the circular debt in the bigger picture. The reduction is 18% without and 41% with renewable energy support.

Suggested Citation

  • Muhammad Azhar Hassan & Saad Ullah Khan & Muhammad Fahad Zia & Azka Sardar & Khawaja Khalid Mehmood & Fiaz Ahmad, 2023. "Demand-Side Management and Its Impact on the Growing Circular Debt of Pakistan’s Energy Sector," Energies, MDPI, vol. 16(15), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5680-:d:1205279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5680/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5680/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Syed Sajid Ali & Sadia Badar, 2010. "Dynamics of Circular Debt in Pakistan and Its Resolution," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 15(Special E), pages 61-74, September.
    2. Nadeem Javaid & Sardar Mehboob Hussain & Ibrar Ullah & Muhammad Asim Noor & Wadood Abdul & Ahmad Almogren & Atif Alamri, 2017. "Demand Side Management in Nearly Zero Energy Buildings Using Heuristic Optimizations," Energies, MDPI, vol. 10(8), pages 1-29, August.
    3. Saad Ullah Khan & Khawaja Khalid Mehmood & Zunaib Maqsood Haider & Muhammad Kashif Rafique & Muhammad Omer Khan & Chul-Hwan Kim, 2021. "Coordination of Multiple Electric Vehicle Aggregators for Peak Shaving and Valley Filling in Distribution Feeders," Energies, MDPI, vol. 14(2), pages 1-16, January.
    4. Torriti, Jacopo, 2012. "Price-based demand side management: Assessing the impacts of time-of-use tariffs on residential electricity demand and peak shifting in Northern Italy," Energy, Elsevier, vol. 44(1), pages 576-583.
    5. Antimo Barbato & Antonio Capone, 2014. "Optimization Models and Methods for Demand-Side Management of Residential Users: A Survey," Energies, MDPI, vol. 7(9), pages 1-38, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    2. Makhadmeh, Sharif Naser & Khader, Ahamad Tajudin & Al-Betar, Mohammed Azmi & Naim, Syibrah & Abasi, Ammar Kamal & Alyasseri, Zaid Abdi Alkareem, 2019. "Optimization methods for power scheduling problems in smart home: Survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Rocha, Helder R.O. & Honorato, Icaro H. & Fiorotti, Rodrigo & Celeste, Wanderley C. & Silvestre, Leonardo J. & Silva, Jair A.L., 2021. "An Artificial Intelligence based scheduling algorithm for demand-side energy management in Smart Homes," Applied Energy, Elsevier, vol. 282(PA).
    4. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    5. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 836-844.
    6. Thijs Klauw & Marco E. T. Gerards & Johann L. Hurink, 2017. "Resource allocation problems in decentralized energy management," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 749-773, July.
    7. Simona-Vasilica Oprea & Adela Bâra & Adriana Reveiu, 2018. "Informatics Solution for Energy Efficiency Improvement and Consumption Management of Householders," Energies, MDPI, vol. 11(1), pages 1-31, January.
    8. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.
    9. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    10. Kim, Kyungah & Choi, Jihye & Lee, Jihee & Lee, Jongsu & Kim, Junghun, 2023. "Public preferences and increasing acceptance of time-varying electricity pricing for demand side management in South Korea," Energy Economics, Elsevier, vol. 119(C).
    11. Yunusov, Timur & Torriti, Jacopo, 2021. "Distributional effects of Time of Use tariffs based on electricity demand and time use," Energy Policy, Elsevier, vol. 156(C).
    12. Anjo, João & Neves, Diana & Silva, Carlos & Shivakumar, Abhishek & Howells, Mark, 2018. "Modeling the long-term impact of demand response in energy planning: The Portuguese electric system case study," Energy, Elsevier, vol. 165(PA), pages 456-468.
    13. Rafique, M. Mujahid & Rehman, S., 2017. "National energy scenario of Pakistan – Current status, future alternatives, and institutional infrastructure: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 156-167.
    14. Sourav Khanna & Victor Becerra & Adib Allahham & Damian Giaouris & Jamie M. Foster & Keiron Roberts & David Hutchinson & Jim Fawcett, 2020. "Demand Response Model Development for Smart Households Using Time of Use Tariffs and Optimal Control—The Isle of Wight Energy Autonomous Community Case Study," Energies, MDPI, vol. 13(3), pages 1-27, January.
    15. Muhammad Riaz & Aamir Hanif & Haris Masood & Muhammad Attique Khan & Kamran Afaq & Byeong-Gwon Kang & Yunyoung Nam, 2021. "An Optimal Power Flow Solution of a System Integrated with Renewable Sources Using a Hybrid Optimizer," Sustainability, MDPI, vol. 13(23), pages 1-12, December.
    16. Osaru Agbonaye & Patrick Keatley & Ye Huang & Motasem Bani Mustafa & Neil Hewitt, 2020. "Design, Valuation and Comparison of Demand Response Strategies for Congestion Management," Energies, MDPI, vol. 13(22), pages 1-29, November.
    17. Afia Malik & Ghulam Mustafa, 2024. "Power Sector Debt and Pakistan’s Economy," PIDE-Working Papers 2024:2, Pakistan Institute of Development Economics.
    18. Kiguchi, Y. & Weeks, M. & Arakawa, R., 2021. "Predicting winners and losers under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 236(C).
    19. Hortay, Olivér & Kökény, László, 2020. "A villamosenergia-fogyasztás elhalasztásával kapcsolatos lakossági attitűd felmérése Magyarországon [A survey of popular attitudes to deferment of electricity consumption in Hungary]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 657-687.
    20. Alipour, Panteha & Mukherjee, Sayanti & Nateghi, Roshanak, 2019. "Assessing climate sensitivity of peak electricity load for resilient power systems planning and operation: A study applied to the Texas region," Energy, Elsevier, vol. 185(C), pages 1143-1153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5680-:d:1205279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.