IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5515-d1198697.html
   My bibliography  Save this article

Backstepping Control of NPC Multilevel Converter Interfacing AC and DC Microgrids

Author

Listed:
  • J. Dionísio Barros

    (Departamento de Engenharia Eletrotécnica, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
    Instituto de Engenharia de Sistemas e Computadores: Investigação e Desenvolvimento em Lisboa, INESC-ID, Rua Alves Redol, 1000-029 Lisboa, Portugal
    Grupo de Investigação em Engenharia Eletrotécnica e de Computadores, GIEEC, Campus Universitário da Penteada, 9020-105 Funchal, Portugal)

  • Luis Rocha

    (Instituto de Engenharia de Sistemas e Computadores: Investigação e Desenvolvimento em Lisboa, INESC-ID, Rua Alves Redol, 1000-029 Lisboa, Portugal
    Instituto Superior de Engenharia de Lisboa, Polytechnic Institute of Lisbon, Rua Conselheiro Emídio Navarro, 1959-007 Lisboa, Portugal)

  • J. Fernando Silva

    (Instituto de Engenharia de Sistemas e Computadores: Investigação e Desenvolvimento em Lisboa, INESC-ID, Rua Alves Redol, 1000-029 Lisboa, Portugal
    Departamento de Engenharia Eletrotécnica e de Computadores, Instituto Superior Técnico, University of Lisbon, INESC-ID, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

Abstract

This work introduces modified backstepping methods to design controllers for neutral point clamped (NPC) converters interfacing a DC/AC microgrid. The modified backstepping controllers are derived from a proper converter model, represented in dq coordinates, and are designed to regulate the DC voltage and to balance the two NPC converter DC capacitor voltages through a DC offset in the sinusoidal pulse width modulation (SPWM) carriers. The averaged and separated dynamics backstepping controllers also enforce nearly sinusoidal AC currents at a given power factor. The two proposed NPC converter controllers are evaluated through MATLAB/Simulink simulations and experimental implementation using a laboratory prototype. Simulations and experimental results show that the two modified backstepping controllers regulate the microgrid DC voltage in steady state and in transient operation, even with load disturbances or DC voltage reference changes, while enforcing nearly AC sinusoidal currents at a given power factor or injected reactive power. The modified backstepping-controlled NPC converter is bidirectional, converting energy from DC renewable energy sources or storage systems to AC or charging storage systems from AC. The results also highlight the effective balancing of the NPC DC capacitor voltages.

Suggested Citation

  • J. Dionísio Barros & Luis Rocha & J. Fernando Silva, 2023. "Backstepping Control of NPC Multilevel Converter Interfacing AC and DC Microgrids," Energies, MDPI, vol. 16(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5515-:d:1198697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5515/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5515/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khaizaran Abdulhussein Al Sumarmad & Nasri Sulaiman & Noor Izzri Abdul Wahab & Hashim Hizam, 2022. "Energy Management and Voltage Control in Microgrids Using Artificial Neural Networks, PID, and Fuzzy Logic Controllers," Energies, MDPI, vol. 15(1), pages 1-22, January.
    2. Hajar Doubabi & Issam Salhi & Najib Essounbouli, 2022. "A Novel Control Technique for Voltage Balancing in Bipolar DC Microgrids," Energies, MDPI, vol. 15(9), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    2. Dominic Savio Abraham & Balaji Chandrasekar & Narayanamoorthi Rajamanickam & Pradeep Vishnuram & Venkatesan Ramakrishnan & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Fuzzy-Based Efficient Control of DC Microgrid Configuration for PV-Energized EV Charging Station," Energies, MDPI, vol. 16(6), pages 1-17, March.
    3. Khaizaran Abdulhussein Al Sumarmad & Nasri Sulaiman & Noor Izzri Abdul Wahab & Hashim Hizam, 2022. "Microgrid Energy Management System Based on Fuzzy Logic and Monitoring Platform for Data Analysis," Energies, MDPI, vol. 15(11), pages 1-19, June.
    4. Yan Yang & Yeqin Wang & Weixing Zhang & Zhenghao Li & Rui Liang, 2022. "Design of Adaptive Fuzzy Sliding-Mode Control for High-Performance Islanded Inverter in Micro-Grid," Energies, MDPI, vol. 15(23), pages 1-25, December.
    5. Hamid Saeed Khan & Attaullah Y. Memon, 2022. "Robust Output Feedback Control of the Voltage Source Inverter in an AC Microgrid," Energies, MDPI, vol. 15(15), pages 1-21, August.
    6. Saqib Yousuf & Viqar Yousuf & Neeraj Gupta & Talal Alharbi & Omar Alrumayh, 2023. "Enhanced Control Designs to Abate Frequency Oscillations in Compensated Power System," Energies, MDPI, vol. 16(5), pages 1-20, February.
    7. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.
    8. Dong Zhao & Shuyan Sun & Ardashir Mohammadzadeh & Amir Mosavi, 2022. "Adaptive Intelligent Model Predictive Control for Microgrid Load Frequency," Sustainability, MDPI, vol. 14(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5515-:d:1198697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.