IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5434-d1196028.html
   My bibliography  Save this article

Experimental Investigation of Coupled Transport Mechanisms in a PEM Based Thermoelectric Energy Converter

Author

Listed:
  • Maike Willke

    (Institute of Thermodynamics, Leibniz University Hannover, 30167 Hannover, Germany)

  • Nils-Eric Rahm

    (Institute of Electric Power Systems, Leibniz University Hannover, 30167 Hannover, Germany)

  • Stephan Kabelac

    (Institute of Thermodynamics, Leibniz University Hannover, 30167 Hannover, Germany)

Abstract

Thermoelectric energy converters based on galvanic cells (TGC) offer the possibility of direct conversion of low-temperature waste heat into electrical energy and could therefore be a promising approach for an increase in the overall efficiency of energy conversion. Due to an externally applied heat source, a temperature gradient across the electrolyte is induced, leading to a gradient in the chemical potential of the species and an electrical potential difference between the electrodes. The aim of approaching an internal equilibrium state leads to various coupled molecular transport mechanisms taking place in the electrolyte, impacting the open circuit voltage (OCV) and the performance of the TGC. By applying the theory of non-equilibrium thermodynamics (NET) to describe these coupled processes, the interactions that occur can be characterized in more detail. In this work, a polymer electrolyte membrane (PEM)-based TGC with two H 2 /H 2 O electrodes of different temperatures and gas compositions is experimentally investigated. By controlling the gradients in temperature and concentration, different impacts on the resulting OCV can be identified. In addition, we present the measured coupling coefficient, representing the singular relation between the transport of the hydrogen ions inside the membrane and the electrical potential difference between the electrodes for a wide variety of working conditions.

Suggested Citation

  • Maike Willke & Nils-Eric Rahm & Stephan Kabelac, 2023. "Experimental Investigation of Coupled Transport Mechanisms in a PEM Based Thermoelectric Energy Converter," Energies, MDPI, vol. 16(14), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5434-:d:1196028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5434/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5434/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Igor Burmistrov & Rita Khanna & Nikolay Gorshkov & Nikolay Kiselev & Denis Artyukhov & Elena Boychenko & Andrey Yudin & Yuri Konyukhov & Maksim Kravchenko & Alexander Gorokhovsky & Denis Kuznetsov, 2022. "Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    2. Daud, W.R.W. & Rosli, R.E. & Majlan, E.H. & Hamid, S.A.A. & Mohamed, R. & Husaini, T., 2017. "PEM fuel cell system control: A review," Renewable Energy, Elsevier, vol. 113(C), pages 620-638.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    2. Komova, O.V. & Simagina, V.I. & Butenko, V.R. & Odegova, G.V. & Bulavchenko, O.A. & Nikolaeva, O.A. & Ozerova, A.M. & Lipatnikova, I.L. & Tayban, E.S. & Mukha, S.A. & Netskina, O.V., 2022. "Dehydrogenation of ammonia borane recrystallized by different techniques," Renewable Energy, Elsevier, vol. 184(C), pages 460-472.
    3. Aihua Tang & Lin Yang & Tao Zeng & Quanqing Yu, 2022. "Cascade Control Method of Sliding Mode and PID for PEMFC Air Supply System," Energies, MDPI, vol. 16(1), pages 1-13, December.
    4. Martin Vrlić & Daniel Ritzberger & Stefan Jakubek, 2021. "Model-Predictive-Control-Based Reference Governor for Fuel Cells in Automotive Application Compared with Performance from a Real Vehicle," Energies, MDPI, vol. 14(8), pages 1-17, April.
    5. Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
    6. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    8. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    9. Luo, Lizhong & Jian, Qifei & Huang, Bi & Huang, Zipeng & Zhao, Jing & Cao, Songyang, 2019. "Experimental study on temperature characteristics of an air-cooled proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 143(C), pages 1067-1078.
    10. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    11. Tomislav Capuder & Bojana Barać & Matija Kostelac & Matej Krpan, 2023. "Three-Stage Modeling Framework for Analyzing Islanding Capabilities of Decarbonized Energy Communities," Energies, MDPI, vol. 16(11), pages 1-24, May.
    12. Won, Jinyeon & Oh, Hwanyeong & Hong, Jongsup & Kim, Minjin & Lee, Won-Yong & Choi, Yoon-Young & Han, Soo-Bin, 2021. "Hybrid diagnosis method for initial faults of air supply systems in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 180(C), pages 343-352.
    13. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
    14. Danqi Su & Jiayang Zheng & Junjie Ma & Zizhe Dong & Zhangjie Chen & Yanzhou Qin, 2023. "Application of Machine Learning in Fuel Cell Research," Energies, MDPI, vol. 16(11), pages 1-32, May.
    15. Latif, Hamid & Wasif, Danish & Rasheed, Saba & Sattar, Abdul & Rafique, M. Shahid & Anwar, Abdul Waheed & Zaheer, S. & Shabbir, Syeda Ammara & Imtiaz, Ayesha & Qutab, Mehwish & Usman, Arslan, 2020. "Gold nanoparticles mixed multiwall carbon nanotubes, supported on graphene nano-ribbons (Au-NT-G) as an efficient reduction electrode for Polymer Electrolyte Membrane fuel cells (PEMFC)," Renewable Energy, Elsevier, vol. 154(C), pages 767-773.
    16. Peng, Fei & Zhao, Yuanzhe & Chen, Ting & Zhang, Xuexia & Chen, Weirong & Zhou, Donghua & Li, Qi, 2018. "Development of robust suboptimal real-time power sharing strategy for modern fuel cell based hybrid tramways considering operational uncertainties and performance degradation," Applied Energy, Elsevier, vol. 226(C), pages 503-521.
    17. Yin, Cong & Gao, Yan & Li, Ting & Xie, Guangyou & Li, Kai & Tang, Hao, 2020. "Study of internal multi-parameter distributions of proton exchange membrane fuel cell with segmented cell device and coupled three-dimensional model," Renewable Energy, Elsevier, vol. 147(P1), pages 650-662.
    18. Adam Polak, 2020. "Simulation of Fuzzy Control of Oxygen Flow in PEM Fuel Cells," Energies, MDPI, vol. 13(9), pages 1-26, May.
    19. Cheng Chang & Weibin Chang & Jiangang Ma & Yafu Zhou, 2021. "Steady-State Control of Fuel Cell Based on Boost Mode of a Dual Winding Motor," Energies, MDPI, vol. 14(15), pages 1-15, August.
    20. Bizon, Nicu, 2019. "Fuel saving strategy using real-time switching of the fueling regulators in the proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5434-:d:1196028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.