IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5428-d1195965.html
   My bibliography  Save this article

Short-Term Photovoltaic Power Plant Output Forecasting Using Sky Images and Deep Learning

Author

Listed:
  • Alen Jakoplić

    (Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia)

  • Dubravko Franković

    (Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia)

  • Juraj Havelka

    (Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia)

  • Hrvoje Bulat

    (Croatian Transmission System Operator Ltd., Kupska 4, 10000 Zagreb, Croatia)

Abstract

With the steady increase in the use of renewable energy sources in the energy sector, new challenges arise, especially the unpredictability of these energy sources. This uncertainty complicates the management, planning, and development of energy systems. An effective solution to these challenges is short-term forecasting of the output of photovoltaic power plants. In this paper, a novel method for short-term production prediction was explored which involves continuous photography of the sky above the photovoltaic power plant. By analyzing a series of sky images, patterns can be identified to help predict future photovoltaic power generation. A hybrid model that integrates both a Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) for short-term production forecasting was developed and tested. This model effectively detects spatial and temporal patterns from images and power output data, displaying considerable prediction accuracy. In particular, a 74% correlation was found between the model’s predictions and actual future production values, demonstrating the model’s efficiency. The results of this paper suggest that the hybrid CNN-LSTM model offers an improvement in prediction accuracy and practicality compared to traditional forecasting methods. This paper highlights the potential of Deep Learning in improving renewable energy practices, particularly in power prediction, contributing to the overall sustainability of power systems.

Suggested Citation

  • Alen Jakoplić & Dubravko Franković & Juraj Havelka & Hrvoje Bulat, 2023. "Short-Term Photovoltaic Power Plant Output Forecasting Using Sky Images and Deep Learning," Energies, MDPI, vol. 16(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5428-:d:1195965
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5428/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5428/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. AlSkaif, Tarek & Dev, Soumyabrata & Visser, Lennard & Hossari, Murhaf & van Sark, Wilfried, 2020. "A systematic analysis of meteorological variables for PV output power estimation," Renewable Energy, Elsevier, vol. 153(C), pages 12-22.
    3. Cristian Crisosto & Eduardo W. Luiz & Gunther Seckmeyer, 2021. "Convolutional Neural Network for High-Resolution Cloud Motion Prediction from Hemispheric Sky Images," Energies, MDPI, vol. 14(3), pages 1-11, February.
    4. Jenniches, Simon, 2018. "Assessing the regional economic impacts of renewable energy sources – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 35-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhenlu & Guo, Junhong & Wang, Xiaoxuan & Wang, Yuexin & Li, Wei & Wang, Xiuquan & Fan, Yurui & Wang, Wenwen, 2024. "Prediction of long-term photovoltaic power generation in the context of climate change," Renewable Energy, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    2. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    4. Agnieszka Brelik & Piotr Nowaczyk & Katarzyna Cheba, 2023. "The Economic Importance of Offshore Wind Energy Development in Poland," Energies, MDPI, vol. 16(23), pages 1-23, November.
    5. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    6. Yang, Yanru & Liu, Yu & Zhang, Yihang & Shu, Shaolong & Zheng, Junsheng, 2025. "DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting," Applied Energy, Elsevier, vol. 378(PA).
    7. Yongju Son & Yeunggurl Yoon & Jintae Cho & Sungyun Choi, 2022. "Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    8. Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
    9. Iwona Bąk & Anna Spoz & Magdalena Zioło & Marek Dylewski, 2021. "Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    10. Banacloche, Santacruz & Gamarra, Ana R. & Lechon, Yolanda & Bustreo, Chiara, 2020. "Socioeconomic and environmental impacts of bringing the sun to earth: A sustainability analysis of a fusion power plant deployment," Energy, Elsevier, vol. 209(C).
    11. Li, Xueling & Li, Renfu & Chang, Huawei & Zeng, Lijian & Xi, Zhaojun & Li, Yichao, 2022. "Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation," Energy, Elsevier, vol. 246(C).
    12. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    13. Huxley, O.T. & Taylor, J. & Everard, A. & Briggs, J. & Tilley, K. & Harwood, J. & Buckley, A., 2022. "The uncertainties involved in measuring national solar photovoltaic electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
    15. Seyed Mahdi Miraftabzadeh & Cristian Giovanni Colombo & Michela Longo & Federica Foiadelli, 2023. "A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks," Forecasting, MDPI, vol. 5(1), pages 1-16, February.
    16. Ding, Lili & Zhao, Zhongchao & Han, Meng, 2021. "Probability density forecasts for steam coal prices in China: The role of high-frequency factors," Energy, Elsevier, vol. 220(C).
    17. Ortega, Margarita & Río, Pablo del & Ruiz, Pablo & Nijs, Wouter & Politis, Savvas, 2020. "Analysing the influence of trade, technology learning and policy on the employment prospects of wind and solar energy deployment: The EU case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    18. Jenniches, Simon & Worrell, Ernst & Fumagalli, Elena, 2019. "Regional economic and environmental impacts of wind power developments: A case study of a German region," Energy Policy, Elsevier, vol. 132(C), pages 499-514.
    19. Ruiz-Arias, José A., 2023. "SPARTA: Solar parameterization for the radiative transfer of the cloudless atmosphere," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5428-:d:1195965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.