IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5417-d1195620.html
   My bibliography  Save this article

Syngas Production from Protective Face Masks through Pyrolysis/Steam Gasification

Author

Listed:
  • Ieva Kiminaitė

    (Laboratory of Combustion Processes, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas, Lithuania)

  • Judith González-Arias

    (Department of Space, Earth and Environment, Chalmers University of Technology, 412 96 Göteborg, Sweden)

  • Nerijus Striūgas

    (Laboratory of Combustion Processes, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas, Lithuania)

  • Justas Eimontas

    (Laboratory of Combustion Processes, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas, Lithuania)

  • Martin Seemann

    (Department of Space, Earth and Environment, Chalmers University of Technology, 412 96 Göteborg, Sweden)

Abstract

The COVID-19 pandemic has caused a heavy expansion of plastic pollution due to the extensive use of personal protective equipment (PPE) worldwide. To avoid problems related to the entrance of these wastes into the environment, proper management of the disposal is required. Here, the steam gasification/pyrolysis technique offers a reliable solution for the utilization of such wastes via chemical recycling into value-added products. The aim was to estimate the effect of thermo-chemical conversion temperature and steam-to-carbon ratio on the distribution of gaseous products obtained during non-catalytic steam gasification of 3-ply face masks and KN95 respirators in a fluidized bed reactor. Experimental results have revealed that the process temperature has a major influence on the composition of gases evolved. The production of syngas was significantly induced by temperature elevation from 700 °C to 800 °C. The highest molar concentration of H 2 gases synthesized from both types of face masks was estimated at 800 °C with the steam-to-carbon ratio varying from 0 to 2. A similar trend of production was also determined for CO gases. Therefore, investigated thermochemical conversion process is a feasible route for the conversion of used face masks to valuable a product such as syngas.

Suggested Citation

  • Ieva Kiminaitė & Judith González-Arias & Nerijus Striūgas & Justas Eimontas & Martin Seemann, 2023. "Syngas Production from Protective Face Masks through Pyrolysis/Steam Gasification," Energies, MDPI, vol. 16(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5417-:d:1195620
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeong, Yong-Seong & Park, Ki-Bum & Kim, Joo-Sik, 2020. "Hydrogen production from steam gasification of polyethylene using a two-stage gasifier and active carbon," Applied Energy, Elsevier, vol. 262(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossam A. Gabbar & Muhammad Sajjad Ahmad, 2024. "Integrated Waste-to-Energy Process Optimization for Municipal Solid Waste," Energies, MDPI, vol. 17(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Jae-Kyung & Jeong, Yong-Seong & Kim, Jong-Woo & Kim, Joo-Sik, 2023. "Two-stage thermochemical conversion of polyethylene terephthalate using steam to produce a clean and H2- and CO-rich syngas," Energy, Elsevier, vol. 276(C).
    2. Aktas, Fatih & Mavukwana, Athi-enkosi & Burra, Kiran Raj Goud & Gupta, Ashwani K., 2024. "Role of spent FCC catalyst in pyrolysis and CO2-assisted gasification of pinewood," Applied Energy, Elsevier, vol. 366(C).
    3. Jeong, Yong-Seong & Kim, Jong-Woo & Seo, Myung-Won & Mun, Tae-Young & Kim, Joo-Sik, 2021. "Characteristics of two-stage air gasification of polystyrene with active carbon as a tar removal agent," Energy, Elsevier, vol. 219(C).
    4. Choi, Min-Jun & Jeong, Yong-Seong & Kim, Joo-Sik, 2021. "Air gasification of polyethylene terephthalate using a two-stage gasifier with active carbon for the production of H2 and CO," Energy, Elsevier, vol. 223(C).
    5. Ehsan Doniavi & Reza Babazadeh & Rezgar Hasanzadeh, 2023. "Optimization of Renewable Energy Supply Chain for Sustainable Hydrogen Energy Production from Plastic Waste," Sustainability, MDPI, vol. 15(24), pages 1-26, December.
    6. Li, Jinhu & Burra, Kiran Raj G. & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2021. "Co-gasification of high-density polyethylene and pretreated pine wood," Applied Energy, Elsevier, vol. 285(C).
    7. Kargbo, Hannah O. & Zhang, Jie & Phan, Anh N., 2021. "Optimisation of two-stage biomass gasification for hydrogen production via artificial neural network," Applied Energy, Elsevier, vol. 302(C).
    8. Zou, Jiecheng & Zhao, Lanxun & Hu, Qiang & Yao, Dingding & Yang, Haiping, 2024. "Pyrolysis and catalytic reforming of disposable plastic waste for syngas production with adjustable H2/CO ratio," Applied Energy, Elsevier, vol. 362(C).
    9. Wang, Zhiwei & Burra, Kiran G. & Zhang, Mengju & Li, Xueqin & He, Xiaofeng & Lei, Tingzhou & Gupta, Ashwani K., 2020. "Syngas evolution and energy efficiency in CO2-assisted gasification of pine bark," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5417-:d:1195620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.