IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5236-d1189372.html
   My bibliography  Save this article

Performance Assessment of Two Different Phase Change Materials for Thermal Energy Storage in Building Envelopes

Author

Listed:
  • Ruta Vanaga

    (Institute of Energy Systems and Environment, Riga Technical University, 1048 Riga, Latvia)

  • Jānis Narbuts

    (Institute of Energy Systems and Environment, Riga Technical University, 1048 Riga, Latvia)

  • Ritvars Freimanis

    (Institute of Energy Systems and Environment, Riga Technical University, 1048 Riga, Latvia)

  • Zigmārs Zundāns

    (Institute of Energy Systems and Environment, Riga Technical University, 1048 Riga, Latvia)

  • Andra Blumberga

    (Institute of Energy Systems and Environment, Riga Technical University, 1048 Riga, Latvia)

Abstract

To meet the 2050 EU decarbonization goals, there is a need for new and innovative ideas to increase energy efficiency, which includes reducing the energy consumption of buildings and increasing the use of on-site renewable energy sources. One possible solution for achieving efficient thermal energy transition in the building sector is to assign new functionalities to the building envelope. The building envelope can function as a thermal energy storage system, which can help compensate for irregularities in solar energy availability. This can be accomplished by utilizing phase change materials as the energy storage medium in the building envelope. In this paper, two phase change materials with different melting temperatures of 21 °C and 28 °C are compared for their application in a dynamic solar building envelope. Both experimental and numerical studies were conducted within the scope of this study. The laboratory testing involved simulating the conditions of the four seasons through steady-state and dynamic experiments. The performance of the phase change materials was evaluated using a small-scale PASLINK test stand that imitates indoor and outdoor conditions. A numerical model of a small-scale building envelope was created using data from laboratory tests. The purpose of this model was to investigate how the tested phase change materials perform under different climate conditions. The experimental findings show that RT21HC is better at storing thermal energy in the PCM and releasing it into the indoor area than RT28HC. On the other hand, the numerical simulation results demonstrate that RT28HC has an advantage in terms of thermal storage capacity in climates found in Southern Europe, as it prevents overheating of the room.

Suggested Citation

  • Ruta Vanaga & Jānis Narbuts & Ritvars Freimanis & Zigmārs Zundāns & Andra Blumberga, 2023. "Performance Assessment of Two Different Phase Change Materials for Thermal Energy Storage in Building Envelopes," Energies, MDPI, vol. 16(13), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5236-:d:1189372
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    2. Atiq Ur Rehman & Shakil R. Sheikh & Zareena Kausar & Sarah J. McCormack, 2021. "Numerical Simulation of a Novel Dual Layered Phase Change Material Brick Wall for Human Comfort in Hot and Cold Climatic Conditions," Energies, MDPI, vol. 14(13), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    2. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    3. Balderrama Prieto, Silvino A. & Sabharwall, Piyush, 2024. "Technical and economic evaluation of heat transfer fluids for a TES system integrated to an advanced nuclear reactor," Applied Energy, Elsevier, vol. 360(C).
    4. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    5. Clark, Ruby-Jean & Farid, Mohammed, 2022. "Experimental investigation into cascade thermochemical energy storage system using SrCl2-cement and zeolite-13X materials," Applied Energy, Elsevier, vol. 316(C).
    6. Nahin Tasmin & Shahjadi Hisan Farjana & Md Rashed Hossain & Santu Golder & M. A. Parvez Mahmud, 2022. "Integration of Solar Process Heat in Industries: A Review," Clean Technol., MDPI, vol. 4(1), pages 1-35, February.
    7. Minjae Son & Minsoo Kim & Hongseok Kim, 2023. "Sector Coupling and Migration towards Carbon-Neutral Power Systems," Energies, MDPI, vol. 16(4), pages 1-12, February.
    8. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    9. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    10. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Hui Wang & Jun Wang & Zailin Piao & Xiaofang Meng & Chao Sun & Gang Yuan & Sitong Zhu, 2020. "The Optimal Allocation and Operation of an Energy Storage System with High Penetration Grid-Connected Photovoltaic Systems," Sustainability, MDPI, vol. 12(15), pages 1-22, July.
    12. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    13. Vanaga, Ruta & Narbuts, Jānis & Zundāns, Zigmārs & Blumberga, Andra, 2023. "On-site testing of dynamic facade system with the solar energy storage," Energy, Elsevier, vol. 283(C).
    14. Nawab Khan & Ram L. Ray & Ghulam Raza Sargani & Muhammad Ihtisham & Muhammad Khayyam & Sohaib Ismail, 2021. "Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture," Sustainability, MDPI, vol. 13(9), pages 1-31, April.
    15. Tavakoli, Ali & Hashemi, Javad & Najafian, Mahyar & Ebrahimi, Amin, 2023. "Physics-based modelling and data-driven optimisation of a latent heat thermal energy storage system with corrugated fins," Renewable Energy, Elsevier, vol. 217(C).
    16. Azimian, Mahdi & Amir, Vahid & Javadi, Saeid, 2020. "Economic and Environmental Policy Analysis for Emission-Neutral Multi-Carrier Microgrid Deployment," Applied Energy, Elsevier, vol. 277(C).
    17. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    18. Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    19. Eklas Hossain & Hossain Mansur Resalat Faruque & Md. Samiul Haque Sunny & Naeem Mohammad & Nafiu Nawar, 2020. "A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects," Energies, MDPI, vol. 13(14), pages 1-127, July.
    20. Rotta Loria, Alessandro F., 2021. "The thermal energy storage potential of underground tunnels used as heat exchangers," Renewable Energy, Elsevier, vol. 176(C), pages 214-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5236-:d:1189372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.