IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5209-d1188414.html
   My bibliography  Save this article

Optimized Control of a Hybrid Water Pumping System Integrated with Solar Photovoltaic and Battery Storage: Towards Sustainable and Green Water-Power Supply

Author

Listed:
  • Hale Bakır

    (Department of Electronics and Automation, Sivas Cumhuriyet University, Sivas 58140, Turkey)

  • Adel Merabet

    (Division of Engineering, Saint Mary’s University, Halifax, NS B3H 3C3, Canada)

  • Mohammadali Kiehbadroudinezhad

    (Division of Engineering, Saint Mary’s University, Halifax, NS B3H 3C3, Canada)

Abstract

This article presents the modeling and optimization control of a hybrid water pumping system utilizing a brushless DC motor. The system incorporates battery storage and a solar photovoltaic array to achieve efficient water pumping. The solar array serves as the primary power source, supplying energy to the water pump for full-volume water surrender. During unfavorable weather conditions or when the photovoltaic array is unable to meet the power demands of the water pump, the battery discharges only at night or during inadequate solar conditions. Additionally, the photovoltaic array can charge the battery on its own when water distribution is not necessary, negating the need for external power sources. A bi-directional charge control mechanism is employed to facilitate automatic switching between the operating modes of the battery, utilizing a buck-boost DC–DC converter. The study incorporates a control system with loops for battery control and DC voltage control within the bidirectional converter. The water cycle algorithm adjusts four control parameters by minimizing an objective function based on tracking errors. The water cycle optimization is compared to other methods based on overshoot and settling time values to evaluate its performance, showcasing its effectiveness in analyzing the results.

Suggested Citation

  • Hale Bakır & Adel Merabet & Mohammadali Kiehbadroudinezhad, 2023. "Optimized Control of a Hybrid Water Pumping System Integrated with Solar Photovoltaic and Battery Storage: Towards Sustainable and Green Water-Power Supply," Energies, MDPI, vol. 16(13), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5209-:d:1188414
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammadali Kiehbadroudinezhad & Adel Merabet & Homa Hosseinzadeh-Bandbafha, 2021. "Optimization of Wind Energy Battery Storage Microgrid by Division Algorithm Considering Cumulative Exergy Demand for Power-Water Cogeneration," Energies, MDPI, vol. 14(13), pages 1-20, June.
    2. Mohammadali Kiehbadroudinezhad & Adel Merabet & Ahmed G. Abo-Khalil & Tareq Salameh & Chaouki Ghenai, 2022. "Intelligent and Optimized Microgrids for Future Supply Power from Renewable Energy Resources: A Review," Energies, MDPI, vol. 15(9), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Varjani, Sunita & Wang, Yajing & Peng, Wanxi & Pan, Junting & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "Marine shell-based biorefinery: A sustainable solution for aquaculture waste valorization," Renewable Energy, Elsevier, vol. 206(C), pages 623-634.
    2. Mohammadali Kiehbadroudinezhad & Adel Merabet & Homa Hosseinzadeh-Bandbafha, 2022. "Review of Latest Advances and Prospects of Energy Storage Systems: Considering Economic, Reliability, Sizing, and Environmental Impacts Approach," Clean Technol., MDPI, vol. 4(2), pages 1-25, June.
    3. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    4. Andrzej Ożadowicz, 2023. "Technical, Qualitative and Energy Analysis of Wireless Control Modules for Distributed Smart Home Systems," Future Internet, MDPI, vol. 15(9), pages 1-21, September.
    5. Ahmed G. Abo-Khalil & Mohammad Alobaid, 2023. "A Guide to the Integration and Utilization of Energy Storage Systems with a Focus on Demand Resource Management and Power Quality Enhancement," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    6. Meenakshi, RM. & Selvi, K., 2024. "Iteratively Sustained Sliding Mode Control based energy management in a DC Microgrid," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 673-695.
    7. Junting Wu & Yingjin Zhang & Kanglong Sun & Qicheng Chen, 2022. "Heat Transfer Enhancement of Phase Change Material in Triple-Tube Latent Heat Thermal Energy Storage Units: Operating Modes and Fin Configurations," Energies, MDPI, vol. 15(15), pages 1-26, August.
    8. Zhang, Xiaojing & Khan, Khalid & Shao, Xuefeng & Oprean-Stan, Camelia & Zhang, Qian, 2024. "The rising role of artificial intelligence in renewable energy development in China," Energy Economics, Elsevier, vol. 132(C).
    9. Emmanuel Hernández-Mayoral & Manuel Madrigal-Martínez & Jesús D. Mina-Antonio & Reynaldo Iracheta-Cortez & Jesús A. Enríquez-Santiago & Omar Rodríguez-Rivera & Gregorio Martínez-Reyes & Edwin Mendoza-, 2023. "A Comprehensive Review on Power-Quality Issues, Optimization Techniques, and Control Strategies of Microgrid Based on Renewable Energy Sources," Sustainability, MDPI, vol. 15(12), pages 1-53, June.
    10. Assia Mahrouch & Mohammed Ouassaid & Zineb Cabrane & Soo Hyoung Lee, 2022. "De-Loaded Technique Enhanced by Fuzzy Logic Controller to Improve the Resilience of Microgrids Based on Wind Energy and Energy Storage Systems," Energies, MDPI, vol. 16(1), pages 1-16, December.
    11. Ehab S. Ali & Sahar. M. Abd Elazim & Sultan H. Hakmi & Mohamed I. Mosaad, 2023. "Optimal Allocation and Size of Renewable Energy Sources as Distributed Generations Using Shark Optimization Algorithm in Radial Distribution Systems," Energies, MDPI, vol. 16(10), pages 1-27, May.
    12. Essayeh, Chaimaa & Morstyn, Thomas, 2023. "Optimal sizing for microgrids integrating distributed flexibility with the Perth West smart city as a case study," Applied Energy, Elsevier, vol. 336(C).
    13. Sumi Kar & Anita Pal & Kajla Basu & Achyuth Sarkar & Biswajit Sarkar, 2023. "The Effect of Renewable Energy and Corporate Social Responsibility on Dual-Channel Supply Chain Management," Energies, MDPI, vol. 16(7), pages 1-26, March.
    14. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.
    15. Aleksandra V. Varganova & Vadim R. Khramshin & Andrey A. Radionov, 2023. "Operating Modes Optimization for the Boiler Units of Industrial Steam Plants," Energies, MDPI, vol. 16(6), pages 1-14, March.
    16. Mohammadali Kiehbadroudinezhad & Adel Merabet & Ahmed G. Abo-Khalil & Tareq Salameh & Chaouki Ghenai, 2022. "Intelligent and Optimized Microgrids for Future Supply Power from Renewable Energy Resources: A Review," Energies, MDPI, vol. 15(9), pages 1-21, May.
    17. Aleksandra V. Varganova & Vadim R. Khramshin & Andrey A. Radionov, 2022. "Improving Efficiency of Electric Energy System and Grid Operating Modes: Review of Optimization Techniques," Energies, MDPI, vol. 15(19), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5209-:d:1188414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.