IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p291-d1016701.html
   My bibliography  Save this article

De-Loaded Technique Enhanced by Fuzzy Logic Controller to Improve the Resilience of Microgrids Based on Wind Energy and Energy Storage Systems

Author

Listed:
  • Assia Mahrouch

    (Engineering for Smart and Sustainable Systems Research Center, Mohammadia School of Engineers, Mohammed V University in Rabat, Rabat 10090, Morocco)

  • Mohammed Ouassaid

    (Engineering for Smart and Sustainable Systems Research Center, Mohammadia School of Engineers, Mohammed V University in Rabat, Rabat 10090, Morocco)

  • Zineb Cabrane

    (Research, Development and Innovation Laboratory, Mundiapolis University, Casablanca 20180, Morocco)

  • Soo Hyoung Lee

    (Department of Electrical and Control Engineering, Mokpo National University, Mokpo 58554, Republic of Korea)

Abstract

Wind turbine generators (WTGs) are highly sensitive to the disturbances of the grid and tend to disconnect quickly during a voltage dip (when the voltage value is less than 80% of the nominal voltage) or when the frequency is greatly changed. As an increasing number of permanent magnet synchronous generators (PMSGs) are incorporated into the modern power grid, system operators expect PMSG-WT to play an active role in low-voltage ride-through (LVRT) and primary frequency regulation (PFR). Consequently, PMSG-WTs must be capable of supplying additional active power in response to changes in system voltage and frequency. In this context, a new de-loaded technique enhanced by a fuzzy-logic controller is suggested to develop the PMSG-pitch angle control (PMSG-PAC). The studied MG consists of a wind farm (WF), variable load, and a battery energy storage system (BESS). The WF contains five PMSG-WTs which are considered to be the principal resource. The proposed DT-FLC ensures maximum aerodynamic reserve power for the plant, enhances its capability to regulate the PAC, adjusts the WTG drop in response to the wind speed, and increases the resilience of the PMSG-WT in the presence of low voltage. Moreover, the PFR is significantly improved in terms of controlling the PAC (−0.0007 Hz) which meets the frequency maximum droop recommended by the IEEE Std 1547-2018 and the Moroccan grid code, −3 Hz and −2.5 Hz, respectively.

Suggested Citation

  • Assia Mahrouch & Mohammed Ouassaid & Zineb Cabrane & Soo Hyoung Lee, 2022. "De-Loaded Technique Enhanced by Fuzzy Logic Controller to Improve the Resilience of Microgrids Based on Wind Energy and Energy Storage Systems," Energies, MDPI, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:291-:d:1016701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammadali Kiehbadroudinezhad & Adel Merabet & Ahmed G. Abo-Khalil & Tareq Salameh & Chaouki Ghenai, 2022. "Intelligent and Optimized Microgrids for Future Supply Power from Renewable Energy Resources: A Review," Energies, MDPI, vol. 15(9), pages 1-21, May.
    2. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    3. Liu, Zifa & Zhang, Zhe & Zhuo, Ranqun & Wang, Xuyang, 2019. "Optimal operation of independent regional power grid with multiple wind-solar-hydro-battery power," Applied Energy, Elsevier, vol. 235(C), pages 1541-1550.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makhdoomi, Sina & Askarzadeh, Alireza, 2020. "Daily performance optimization of a grid-connected hybrid system composed of photovoltaic and pumped hydro storage (PV/PHS)," Renewable Energy, Elsevier, vol. 159(C), pages 272-285.
    2. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    3. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    4. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    5. Andrzej Ożadowicz, 2023. "Technical, Qualitative and Energy Analysis of Wireless Control Modules for Distributed Smart Home Systems," Future Internet, MDPI, vol. 15(9), pages 1-21, September.
    6. Ahmed G. Abo-Khalil & Mohammad Alobaid, 2023. "A Guide to the Integration and Utilization of Energy Storage Systems with a Focus on Demand Resource Management and Power Quality Enhancement," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    7. Guo, Su & Zheng, Kun & He, Yi & Kurban, Aynur, 2023. "The artificial intelligence-assisted short-term optimal scheduling of a cascade hydro-photovoltaic complementary system with hybrid time steps," Renewable Energy, Elsevier, vol. 202(C), pages 1169-1189.
    8. Tianyao Zhang & Diyi Chen & Jing Liu & Beibei Xu & Venkateshkumar M, 2020. "A Feasibility Analysis of Controlling a Hybrid Power System over Short Time Intervals," Energies, MDPI, vol. 13(21), pages 1-21, October.
    9. Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).
    10. Yuan, Wenlin & Wang, Xinqi & Su, Chengguo & Cheng, Chuntian & Liu, Zhe & Wu, Zening, 2021. "Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming," Energy, Elsevier, vol. 222(C).
    11. Huang, Kangdi & Luo, Peng & Liu, Pan & KIM, Jong Suk & Wang, Yintang & Xu, Weifeng & Li, He & Gong, Yu, 2022. "Improving complementarity of a hybrid renewable energy system to meet load demand by using hydropower regulation ability," Energy, Elsevier, vol. 248(C).
    12. Meenakshi, RM. & Selvi, K., 2024. "Iteratively Sustained Sliding Mode Control based energy management in a DC Microgrid," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 673-695.
    13. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Varjani, Sunita & Wang, Yajing & Peng, Wanxi & Pan, Junting & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "Marine shell-based biorefinery: A sustainable solution for aquaculture waste valorization," Renewable Energy, Elsevier, vol. 206(C), pages 623-634.
    14. Khaizaran Abdulhussein Al Sumarmad & Nasri Sulaiman & Noor Izzri Abdul Wahab & Hashim Hizam, 2022. "Microgrid Energy Management System Based on Fuzzy Logic and Monitoring Platform for Data Analysis," Energies, MDPI, vol. 15(11), pages 1-19, June.
    15. Raya-Armenta, Jose Maurilio & Bazmohammadi, Najmeh & Avina-Cervantes, Juan Gabriel & Sáez, Doris & Vasquez, Juan C. & Guerrero, Josep M., 2021. "Energy management system optimization in islanded microgrids: An overview and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Geng, Xinmin & Zhou, Ye & Zhao, Weiqiang & Shi, Li & Chen, Diyi & Bi, Xiaojian & Xu, Beibei, 2024. "Pricing ancillary service of a Francis hydroelectric generating system to promote renewable energy integration in a clean energy base: Tariff compensation of deep peak regulation," Renewable Energy, Elsevier, vol. 226(C).
    17. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.
    18. Saad, Ahmed A. & Faddel, Samy & Mohammed, Osama, 2019. "A secured distributed control system for future interconnected smart grids," Applied Energy, Elsevier, vol. 243(C), pages 57-70.
    19. Xu, Shitian & Liu, Pan & Li, Xiao & Cheng, Qian & Liu, Zheyuan, 2023. "Deriving long-term operating rules of the hydro-wind-PV hybrid energy system considering electricity price," Renewable Energy, Elsevier, vol. 219(P1).
    20. Anantha Krishnan, V. & Balamurugan, P., 2022. "An efficient DLN2-CRSO approach based dynamic stability enhancement in micro-grid system," Applied Energy, Elsevier, vol. 322(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:291-:d:1016701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.