IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5181-d1187431.html
   My bibliography  Save this article

Wind Farm Control for Improved Battery Lifetime in Green Hydrogen Systems without a Grid Connection

Author

Listed:
  • Adam Stock

    (Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences (EPS), Heriot-Watt University, Edinburgh EH14 4AS, UK)

  • Matthew Cole

    (Electronic and Electrical Engineering Department, University of Strathclyde, Glasgow G1 1XQ, UK)

  • Mathieu Kervyn

    (Offshore Renewable Energy Catapult, Offshore House, Albert St., Blyth NE24 1LZ, UK)

  • Fulin Fan

    (Electronic and Electrical Engineering Department, University of Strathclyde, Glasgow G1 1XQ, UK)

  • James Ferguson

    (Offshore Renewable Energy Catapult, Offshore House, Albert St., Blyth NE24 1LZ, UK)

  • Anup Nambiar

    (Offshore Renewable Energy Catapult, Offshore House, Albert St., Blyth NE24 1LZ, UK)

  • Benjamin Pepper

    (Electronic and Electrical Engineering Department, University of Strathclyde, Glasgow G1 1XQ, UK)

  • Michael Smailes

    (Offshore Renewable Energy Catapult, Offshore House, Albert St., Blyth NE24 1LZ, UK)

  • David Campos-Gaona

    (Electronic and Electrical Engineering Department, University of Strathclyde, Glasgow G1 1XQ, UK)

Abstract

Green hydrogen is likely to play an important role in meeting the net-zero targets of countries around the globe. One potential option for green hydrogen production is to run electrolysers directly from offshore wind turbines, with no grid connection and hence no expensive cabling to shore. In this work, an innovative proof of concept of a wind farm control methodology designed to reduce variability in wind farm active power output is presented. Smoothing the power supplied by the wind farm to the battery reduces the size and number of battery charge cycles and helps to increase battery lifetime. This work quantifies the impact of the wind farm control method on battery lifetime for wind farms of 1, 4, 9 and 16 wind turbines using suitable wind farm, battery and electrolyser models. The work presented shows that wind farm control for smoothing wind farm power output could play a critical role in reducing the levelised cost of green hydrogen produced from wind farms with no grid connection by reducing the damaging load cycles on batteries in the system. Hence, this work paves the way for the design and testing of a full implementation of the wind farm controller.

Suggested Citation

  • Adam Stock & Matthew Cole & Mathieu Kervyn & Fulin Fan & James Ferguson & Anup Nambiar & Benjamin Pepper & Michael Smailes & David Campos-Gaona, 2023. "Wind Farm Control for Improved Battery Lifetime in Green Hydrogen Systems without a Grid Connection," Energies, MDPI, vol. 16(13), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5181-:d:1187431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5181/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Papakonstantinou, Georgios & Algara-Siller, Gerardo & Teschner, Detre & Vidaković-Koch, Tanja & Schlögl, Robert & Sundmacher, Kai, 2020. "Degradation study of a proton exchange membrane water electrolyzer under dynamic operation conditions," Applied Energy, Elsevier, vol. 280(C).
    2. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    3. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lifeng Du & Yanmei Yang & Luli Zhou & Min Liu, 2024. "Greenhouse Gas Reduction Potential and Economics of Green Hydrogen via Water Electrolysis: A Systematic Review of Value-Chain-Wide Decarbonization," Sustainability, MDPI, vol. 16(11), pages 1-37, May.
    2. Sayed-Ahmed, H. & Toldy, Á.I. & Santasalo-Aarnio, A., 2024. "Dynamic operation of proton exchange membrane electrolyzers—Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Lv, Hong & Sun, Yongwen & Wang, Sen & Chen, Jingxian & Gao, Yuanfeng & Hu, Ding & Yao, Han & Zhang, Cunman, 2024. "Synergistic gradient distribution of IrO2/TiNX ratio and ionomer content reduces the internal voltage loss of the anode catalytic layer in PEM water electrolysis," Applied Energy, Elsevier, vol. 363(C).
    4. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    5. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    6. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    7. Oliver Wagner & Thomas Adisorn & Lena Tholen & Dagmar Kiyar, 2020. "Surviving the Energy Transition: Development of a Proposal for Evaluating Sustainable Business Models for Incumbents in Germany’s Electricity Market," Energies, MDPI, vol. 13(3), pages 1-17, February.
    8. d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
    9. Ziyu Zhang & Peng Huang & Haocheng Sun, 2020. "A Novel Analytical Wake Model with a Cosine-Shaped Velocity Deficit," Energies, MDPI, vol. 13(13), pages 1-20, June.
    10. Sarlak, H. & Meneveau, C. & Sørensen, J.N., 2015. "Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions," Renewable Energy, Elsevier, vol. 77(C), pages 386-399.
    11. Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Negar Shaya & Simon Glöser-Chahoud, 2024. "A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances," Energies, MDPI, vol. 17(16), pages 1-21, August.
    13. Nicolas Tobin & Ali M. Hamed & Leonardo P. Chamorro, 2015. "An Experimental Study on the Effects ofWinglets on the Wake and Performance of a ModelWind Turbine," Energies, MDPI, vol. 8(10), pages 1-18, October.
    14. Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
    15. Mehar Ullah & Daniel Gutierrez-Rojas & Eero Inkeri & Tero Tynjälä & Pedro H. J. Nardelli, 2022. "Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    16. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Li, Qi, 2019. "A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes," Applied Energy, Elsevier, vol. 233, pages 975-984.
    17. Anagnostopoulos, Sokratis J. & Bauer, Jens & Clare, Mariana C.A. & Piggott, Matthew D., 2023. "Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models," Renewable Energy, Elsevier, vol. 218(C).
    18. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    19. Li, Siyi & Zhang, Mingrui & Piggott, Matthew D., 2023. "End-to-end wind turbine wake modelling with deep graph representation learning," Applied Energy, Elsevier, vol. 339(C).
    20. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5181-:d:1187431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.