IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5087-d1184373.html
   My bibliography  Save this article

Optimizing the Design of an Interior Permanent Magnet Synchronous Motor for Electric Vehicles with a Hybrid ABC-SVM Algorithm

Author

Listed:
  • Jong-Woon Park

    (Department of Electrical, Electronic, and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea)

  • Min-Mo Koo

    (Department of Automotive Materials & Components R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, Republic of Korea)

  • Hyun-Uk Seo

    (Department of Robotics & Mechatronics, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea)

  • Dong-Kuk Lim

    (Department of Electrical, Electronic, and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea)

Abstract

This paper presents a comprehensive investigation of the optimal design of an interior permanent magnet synchronous motor (IPMSM) for electric vehicles (EVs), utilizing the hybrid artificial bee colony algorithm–support vector machine (HAS) algorithm. The performance of the drive motor is a crucial determinant of the overall vehicle performance, particularly in EVs that rely solely on a motor for propulsion. In this context, interior permanent magnet synchronous motors (IPMSMs) offer a compelling choice due to their high torque density, wide speed range, superior efficiency, and robustness. However, accurate analysis of the nonlinear characteristics of IPMSMs necessitates finite element analysis, which can be time-consuming. Therefore, research into methods for deriving an optimal model with minimal computation is of significant importance. The HAS is a powerful multimodal optimization technique that is capable of exploring several optimal solutions. It enhances the navigation capability by combining the artificial bee colony algorithm (ABC) with the kernel support vector machine (KSVM). Specifically, the algorithm improves the search ability by optimizing the movement of bees in each region generated by the KSVM. Furthermore, hybridization with the Nelder–Mead method ensures accurate and quick convergence at pointers discovered in the ABC. To demonstrate the effectiveness of the proposed algorithm, this study compared its performance with a conventional algorithm in two mathematical test functions, verifying its remarkable performance. Finally, the HAS algorithm was applied to the optimal design of the IPMSM for EVs. Overall, this paper provides a thorough investigation of the application of the HAS algorithm to the design of IPMSMs for electric vehicles, and its application is expected to benefit from the combination of machine-learning techniques with various other optimization algorithms.

Suggested Citation

  • Jong-Woon Park & Min-Mo Koo & Hyun-Uk Seo & Dong-Kuk Lim, 2023. "Optimizing the Design of an Interior Permanent Magnet Synchronous Motor for Electric Vehicles with a Hybrid ABC-SVM Algorithm," Energies, MDPI, vol. 16(13), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5087-:d:1184373
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5087/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5087/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalim Ullah & Quanyuan Jiang & Guangchao Geng & Sahar Rahim & Rehan Ali Khan, 2022. "Optimal Power Sharing in Microgrids Using the Artificial Bee Colony Algorithm," Energies, MDPI, vol. 15(3), pages 1-22, January.
    2. Feng Jiang & Fan Yang & Songjun Sun & Kai Yang, 2022. "Improved Linear Active Disturbance Rejection Control for IPMSM Drives Considering Load Inertia Mismatch," Energies, MDPI, vol. 15(3), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Upasana Lakhina & Nasreen Badruddin & Irraivan Elamvazuthi & Ajay Jangra & Truong Hoang Bao Huy & Josep M. Guerrero, 2023. "An Enhanced Multi-Objective Optimizer for Stochastic Generation Optimization in Islanded Renewable Energy Microgrids," Mathematics, MDPI, vol. 11(9), pages 1-24, April.
    2. Malika Fodil & Ali Djerioui & Mohamed Ladjal & Abdelhakim Saim & Fouad Berrabah & Hemza Mekki & Samir Zeghlache & Azeddine Houari & Mohamed Fouad Benkhoris, 2023. "Optimization of PI Controller Parameters by GWO Algorithm for Five-Phase Asynchronous Motor," Energies, MDPI, vol. 16(10), pages 1-14, May.
    3. Kalim Ullah & Quanyuan Jiang & Guangchao Geng & Rehan Ali Khan & Sheraz Aslam & Wahab Khan, 2022. "Optimization of Demand Response and Power-Sharing in Microgrids for Cost and Power Losses," Energies, MDPI, vol. 15(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5087-:d:1184373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.