IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5048-d1182740.html
   My bibliography  Save this article

Modeling and Analyzing the Impact of Different Operating Conditions for Electric and Conventional Vehicles in Malaysia on Energy, Economic, and the Environment

Author

Listed:
  • Nur Ayeesha Qisteena Muzir

    (Higher Institution Centre of Excellence (HICoE), UM Power Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D UM, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia
    Institute of Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Md. Hasanuzzaman

    (Higher Institution Centre of Excellence (HICoE), UM Power Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D UM, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia)

  • Jeyraj Selvaraj

    (Higher Institution Centre of Excellence (HICoE), UM Power Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D UM, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia)

Abstract

Given the significance of the transportation sector to the economy of a country, major companies and government-linked entities have invested in infrastructure and transportation services. Nonetheless, the sector faces issues relating to traffic congestion, energy consumption, and environmental impacts such as air pollution and carbon emissions. To address and analyze these issues, the current study employed microscopic modeling using the AIMSUN software, which allowed for detailed modeling and simulation. The current study examined the impacts of different operating conditions, namely: internal combustion engine vehicles (ICEVs) and electric vehicles (EVs), on energy consumption, energy savings, cost savings, and emissions traveling on a total of six (6) routes: (i) long-distance highway travel, (ii) short-distance highway travel, (iii) long-distance urban travel, (iv) short-distance urban travel, (v) long-distance suburban travel, and (vi) short-distance suburban travel. The impacts of the traffic management systems, such as traffic lights, roundabouts, and road altitude, were also analyzed in this research. The current study discovered that, on average, EVs consumed 30 percent less energy than ICEVs and a 26 percent energy cost saving for long-distance highway travel. On long-distance urban travel, EVs experienced higher energy and cost savings than ICEVs, with 86 percent and 64 percent, respectively. In addition, EVs had lower carbon dioxide emissions than ICEVs. This study concludes that EVs offer positive impacts on energy cost savings and carbon dioxide emissions reduction for all six (6) simulated routes in Malaysia compared to ICEVs, thereby contributing to the existing literature on EVs in Malaysia.

Suggested Citation

  • Nur Ayeesha Qisteena Muzir & Md. Hasanuzzaman & Jeyraj Selvaraj, 2023. "Modeling and Analyzing the Impact of Different Operating Conditions for Electric and Conventional Vehicles in Malaysia on Energy, Economic, and the Environment," Energies, MDPI, vol. 16(13), pages 1-31, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5048-:d:1182740
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5048/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5048/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shoki Kosai & Sazalina Zakaria & Hang Seng Che & Md Hasanuzzaman & Nasrudin Abd Rahim & Chiakwang Tan & Radin Diana R. Ahmad & Ahmad Rosly Abbas & Katsuyuki Nakano & Eiji Yamasue & Wei Kian Woon & Amm, 2022. "Estimation of Greenhouse Gas Emissions of Petrol, Biodiesel and Battery Electric Vehicles in Malaysia Based on Life Cycle Approach," Sustainability, MDPI, vol. 14(10), pages 1-12, May.
    2. Neves, Andre & Brand, Christian, 2019. "Assessing the potential for carbon emissions savings from replacing short car trips with walking and cycling using a mixed GPS-travel diary approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 123(C), pages 130-146.
    3. Kyoungho Ahn & Sangjun Park & Hesham A. Rakha, 2020. "Impact of Intersection Control on Battery Electric Vehicle Energy Consumption," Energies, MDPI, vol. 13(12), pages 1-11, June.
    4. Bamidele Victor Ayodele & Siti Indati Mustapa, 2020. "Life Cycle Cost Assessment of Electric Vehicles: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    5. Francesco Acuto & Margarida C. Coelho & Paulo Fernandes & Tullio Giuffrè & Elżbieta Macioszek & Anna Granà, 2022. "Assessing the Environmental Performances of Urban Roundabouts Using the VSP Methodology and AIMSUN," Energies, MDPI, vol. 15(4), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nur Ayeesha Qisteena Muzir & Md. Rayid Hasan Mojumder & Md. Hasanuzzaman & Jeyraj Selvaraj, 2022. "Challenges of Electric Vehicles and Their Prospects in Malaysia: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-40, July.
    2. Lixin Yan & Bowen Sheng & Yi He & Shan Lu & Junhua Guo, 2022. "Forecasting and Planning Method for Taxi Travel Combining Carbon Emission and Revenue Factors—A Case Study in China," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    3. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    4. Xin-Wei Li & Hong-Zhi Miao, 2023. "How to Incorporate Autonomous Vehicles into the Carbon Neutrality Framework of China: Legal and Policy Perspectives," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    5. Kalina Grzesiuk & Dorota Jegorow & Monika Wawer & Anna Głowacz, 2023. "Energy-Efficient City Transportation Solutions in the Context of Energy-Conserving and Mobility Behaviours of Generation Z," Energies, MDPI, vol. 16(15), pages 1-28, August.
    6. Viktorija Bobinaite & Inga Konstantinaviciute & Arvydas Galinis & Ausra Pazeraite & Vaclovas Miskinis & Mindaugas Cesnavicius, 2023. "Energy Sufficiency in the Passenger Transport of Lithuania," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    7. Owain Simpson & Mark Elliott & Catherine Muller & Tim Jones & Phillippa Hentsch & Daniel Rooney & Nicole Cowell & William J. Bloss & Suzanne E. Bartington, 2022. "Evaluating Actions to Improve Air Quality at University Hospitals Birmingham NHS Foundation Trust," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    8. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    9. Scorrano, Mariangela & Danielis, Romeo, 2021. "Active mobility in an Italian city: Mode choice determinants and attitudes before and during the Covid-19 emergency," Research in Transportation Economics, Elsevier, vol. 86(C).
    10. Fuquan Zhao & Kangda Chen & Han Hao & Zongwei Liu, 2020. "Challenges, Potential and Opportunities for Internal Combustion Engines in China," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    11. Thirupathi Rao & Siti Indati Mustapa, 2020. "A Review of Climate Economic Models in Malaysia," Sustainability, MDPI, vol. 13(1), pages 1-20, December.
    12. Anderson Breno Souza & Alvaro Antonio Villa Ochoa & José Ângelo Peixoto da Costa & Gustavo de Novaes Pires Leite & Héber Claudius Nunes Silva & Andrezza Carolina Carneiro Tómas & David Campos Barbosa , 2023. "A Review of Tropical Organic Materials for Biodiesel as a Substitute Energy Source in Internal Combustion Engines: A Viable Solution?," Energies, MDPI, vol. 16(9), pages 1-25, April.
    13. Sandra Mandic & Erika Ikeda & Tom Stewart & Nicholas Garrett & Debbie Hopkins & Jennifer S. Mindell & El Shadan Tautolo & Melody Smith, 2020. "Sociodemographic and Built Environment Associates of Travel to School by Car among New Zealand Adolescents: Meta-Analysis," IJERPH, MDPI, vol. 17(23), pages 1-17, December.
    14. Guilhem Lecouteux & Léonard Moulin, 2023. "Cycling in the Aftermath of COVID-19: An Empirical Estimation of the Social Dynamics of Bicycle Adoption in Paris," GREDEG Working Papers 2023-02, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    15. Nigro, Marialisa & Castiglione, Marisdea & Maria Colasanti, Fabio & De Vincentis, Rosita & Valenti, Gaetano & Liberto, Carlo & Comi, Antonio, 2022. "Exploiting floating car data to derive the shifting potential to electric micromobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 78-93.
    16. Siti Indati Mustapa & Bamidele Victor Ayodele & Waznatol Widad Mohamad Ishak & Freida Ozavize Ayodele, 2020. "Evaluation of Cost Competitiveness of Electric Vehicles in Malaysia Using Life Cycle Cost Analysis Approach," Sustainability, MDPI, vol. 12(13), pages 1-14, June.
    17. Isabel C. Gil-García & Mª Socorro García-Cascales & Habib Dagher & Angel Molina-García, 2021. "Electric Vehicle and Renewable Energy Sources: Motor Fusion in the Energy Transition from a Multi-Indicator Perspective," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    18. Antti Lajunen & Klaus Kivekäs & Jari Vepsäläinen & Kari Tammi, 2020. "Influence of Increasing Electrification of Passenger Vehicle Fleet on Carbon Dioxide Emissions in Finland," Sustainability, MDPI, vol. 12(12), pages 1-13, June.
    19. Ibham Veza & Mohd Syaifuddin & Muhammad Idris & Safarudin Gazali Herawan & Abdulfatah Abdu Yusuf & Islam Md Rizwanul Fattah, 2024. "Electric Vehicle (EV) Review: Bibliometric Analysis of Electric Vehicle Trend, Policy, Lithium-Ion Battery, Battery Management, Charging Infrastructure, Smart Charging, and Electric Vehicle-to-Everyth," Energies, MDPI, vol. 17(15), pages 1-43, July.
    20. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5048-:d:1182740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.