IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4994-d1181001.html
   My bibliography  Save this article

Microfluidic Studies on Minimum Miscibility Pressure for n-Decane and CO 2

Author

Listed:
  • Dmitrii Pereponov

    (Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
    LABADVANCE, 121205 Moscow, Russia)

  • Michael Tarkhov

    (Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, 119991 Moscow, Russia)

  • Desmond Batsa Dorhjie

    (Skolkovo Institute of Science and Technology, 121205 Moscow, Russia)

  • Alexander Rykov

    (Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, 119991 Moscow, Russia)

  • Ivan Filippov

    (Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, 119991 Moscow, Russia)

  • Elena Zenova

    (Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, 119991 Moscow, Russia)

  • Vladislav Krutko

    (Gazpromneft STC LLC, 190000 Saint-Petersburg, Russia)

  • Alexey Cheremisin

    (Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
    LABADVANCE, 121205 Moscow, Russia)

  • Evgeny Shilov

    (Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
    LABADVANCE, 121205 Moscow, Russia)

Abstract

Oil production is a complex process that can be made more efficient by applying gas enhanced oil recovery (EOR) methods. Thus, it is essential to know the minimum miscibility pressure (MMP) and minimum miscibility enrichment (MME) of gas in oil. Conventional slim-tube experiments for the measurement of MMP require hundreds of millilitres of real or recombined oil and last over 30 days. Advances in microfluidic technology allow the reduction of the amount of fluid and the time required in determining MMP (or MME), hence making the process rapid. In this study, we developed a microfluidic model with a stochastically distributed pore network, porosity of 74.6% and volume of 83.26 nanolitres. Although the volume was six orders of magnitude smaller than the slim tube, it retained the same proportions, guaranteeing a proper comparison between the tests. This microfluidic chip allowed the study of the MMP of n-decane with carbon dioxide at two different temperature conditions. The experimental results coincided with the results received both from conventional and microfluidic experiments. Furthermore, a numerical simulation of a section of the microfluidic model under the experimental conditions presented results within acceptable margins of the experimental ones. The results of the presented methodology indicate the potential to replace conventional technology for the measurement of MMP with microfluidic technology. Its promise lies in accelerating laboratory tests and increasing the reliability of experimental results and, subsequently, the quality of field gas EOR operations.

Suggested Citation

  • Dmitrii Pereponov & Michael Tarkhov & Desmond Batsa Dorhjie & Alexander Rykov & Ivan Filippov & Elena Zenova & Vladislav Krutko & Alexey Cheremisin & Evgeny Shilov, 2023. "Microfluidic Studies on Minimum Miscibility Pressure for n-Decane and CO 2," Energies, MDPI, vol. 16(13), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4994-:d:1181001
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4994/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4994/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    2. Choubineh, Negin & Jannesari, Hamid & Kasaeian, Alibakhsh, 2019. "Experimental study of the effect of using phase change materials on the performance of an air-cooled photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 103-111.
    3. Edwin A. Chukwudeme & Aly A. Hamouda, 2009. "Enhanced Oil Recovery (EOR) by Miscible CO 2 and Water Flooding of Asphaltenic and Non-Asphaltenic Oils," Energies, MDPI, vol. 2(3), pages 1-24, September.
    4. Qingsong Ma & Zhanpeng Zheng & Jiarui Fan & Jingdong Jia & Jingjing Bi & Pei Hu & Qilin Wang & Mengxin Li & Wei Wei & Dayong Wang, 2021. "Pore-Scale Simulations of CO 2 /Oil Flow Behavior in Heterogeneous Porous Media under Various Conditions," Energies, MDPI, vol. 14(3), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chenyu & Wang, Ning & Xu, Hongtao & Fang, Yuan & Yang, Qiguo & Talkhoncheh, Fariborz Karimi, 2023. "Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins," Energy, Elsevier, vol. 263(PA).
    2. Desmond Batsa Dorhjie & Elena Mukhina & Anton Kasyanenko & Alexey Cheremisin, 2023. "Tight and Shale Oil Exploration: A Review of the Global Experience and a Case of West Siberia," Energies, MDPI, vol. 16(18), pages 1-28, September.
    3. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan, 2021. "Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches," Energy, Elsevier, vol. 228(C).
    4. Chao Chen & Xiang Tang & Ming Qin & Rui Zhou & Zhenhua Ding & Guihui Lian & Huan Qi & Xin Chen & Zheyu Liu & Yiqiang Li, 2022. "Experimental Evaluation of Shale Oil Development Effectiveness by Air Injection," Energies, MDPI, vol. 15(24), pages 1-13, December.
    5. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Zhou, Xianmin & Wu, Yu-Shu & Chen, Hao & Elsayed, Mahmoud & Yu, Wei & Zhao, Xinrui & Murtaza, Mobeen & Shahzad Kamal, Muhammad & Zafar Khan, Sarmad & Al-Abdrabalnabi, Ridha & Ren, Bo, 2024. "Review of Carbon dioxide utilization and sequestration in depleted oil reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    7. Chen, Binbin & Xuan, Jin & Offer, Gregory James & Wang, Huizhi, 2020. "Multiplex measurement of diffusion in zinc battery electrolytes from microfluidics using Raman microspectroscopy," Applied Energy, Elsevier, vol. 279(C).
    8. Song, Hongqing & Lao, Junming & Zhang, Liyuan & Xie, Chiyu & Wang, Yuhe, 2023. "Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency," Applied Energy, Elsevier, vol. 337(C).
    9. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    10. Jian, Guoqing & Gizzatov, Ayrat & Kawelah, Mohammed & AlYousef, Zuhair & Abdel-Fattah, Amr I., 2021. "Simply built microfluidics for fast screening of CO2 foam surfactants and foam model parameters estimation," Applied Energy, Elsevier, vol. 292(C).
    11. Ganggang Hou & Xiaoli Ma & Wenyue Zhao & Pengxiang Diwu & Tongjing Liu & Jirui Hou, 2021. "Synergistic Modes and Enhanced Oil Recovery Mechanism of CO 2 Synergistic Huff and Puff," Energies, MDPI, vol. 14(12), pages 1-30, June.
    12. Sudhakar, P. & Santosh, R. & Asthalakshmi, B. & Kumaresan, G. & Velraj, R., 2021. "Performance augmentation of solar photovoltaic panel through PCM integrated natural water circulation cooling technique," Renewable Energy, Elsevier, vol. 172(C), pages 1433-1448.
    13. Huang, Xianfu & Zhao, Ya-Pu, 2023. "Evolution of pore structure and adsorption-desorption in oil shale formation rocks after compression," Energy, Elsevier, vol. 278(PA).
    14. PraveenKumar, Seepana & Agyekum, Ephraim Bonah & Kumar, Abhinav & Velkin, Vladimir Ivanovich, 2023. "Performance evaluation with low-cost aluminum reflectors and phase change material integrated to solar PV modules using natural air convection: An experimental investigation," Energy, Elsevier, vol. 266(C).
    15. Reji Kumar, R. & Samykano, M. & Pandey, A.K. & Kadirgama, K. & Tyagi, V.V., 2020. "Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Vaziri Rad, Mohammad Amin & Toopshekan, Ashkan & Rahdan, Parisa & Kasaeian, Alibakhsh & Mahian, Omid, 2020. "A comprehensive study of techno-economic and environmental features of different solar tracking systems for residential photovoltaic installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    17. Lei Li & Xue Zhang & Jiahui Liu & Qiuheng Xie & Xiaomei Zhou & Jianyang Zheng & Yuliang Su, 2022. "Research Progress and Prospect of Carbon Dioxide Utilization and Storage Based on Unconventional Oil and Gas Development," Energies, MDPI, vol. 15(24), pages 1-29, December.
    18. Wang, Chao & Liu, Bo & Mohammadi, Mohammad-Reza & Fu, Li & Fattahi, Elham & Motra, Hem Bahadur & Hazra, Bodhisatwa & Hemmati-Sarapardeh, Abdolhossein & Ostadhassan, Mehdi, 2024. "Integrating experimental study and intelligent modeling of pore evolution in the Bakken during simulated thermal progression for CO2 storage goals," Applied Energy, Elsevier, vol. 359(C).
    19. Guo, Yaohao & Liu, Fen & Qiu, Junjie & Xu, Zhi & Bao, Bo, 2022. "Microscopic transport and phase behaviors of CO2 injection in heterogeneous formations using microfluidics," Energy, Elsevier, vol. 256(C).
    20. Hao, Yongmao & Li, Zongfa & Su, Yuliang & Kong, Chuixian & Chen, Hong & Meng, Yang, 2022. "Experimental investigation of CO2 storage and oil production of different CO2 injection methods at pore-scale and core-scale," Energy, Elsevier, vol. 254(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4994-:d:1181001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.